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Abstract. Geoscientific models and measurements gener-
ate false precision (scientifically meaningless data bits) that
wastes storage space. False precision can mislead (by im-
plying noise is signal) and be scientifically pointless, espe-
cially for measurements. By contrast, lossy compression can
be both economical (save space) and heuristic (clarify data
limitations) without compromising the scientific integrity of
data. Data quantization can thus be appropriate regardless of
whether space limitations are a concern. We introduce, im-
plement, and characterize a new lossy compression scheme
suitable for IEEE floating-point data. Our new Bit Grooming
algorithm alternately shaves (to zero) and sets (to one) the
least significant bits of consecutive values to preserve a de-
sired precision. This is a symmetric, two-sided variant of an
algorithm sometimes called Bit Shaving that quantizes val-
ues solely by zeroing bits. Our variation eliminates the artifi-
cial low bias produced by always zeroing bits, and makes Bit
Grooming more suitable for arrays and multi-dimensional
fields whose mean statistics are important.

Bit Grooming relies on standard lossless compression to
achieve the actual reduction in storage space, so we tested
Bit Grooming by applying the DEFLATE compression algo-
rithm to bit-groomed and full-precision climate data stored in
netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Groom-
ing reduces the storage space required by initially uncom-
pressed and compressed climate data by 25–80 and 5–65 %,
respectively, for single-precision values (the most common
case for climate data) quantized to retain 1–5 decimal digits
of precision. The potential reduction is greater for double-
precision datasets. When used aggressively (i.e., preserving
only 1–2 digits), Bit Grooming produces storage reductions
comparable to other quantization techniques such as Linear

Packing. Unlike Linear Packing, whose guaranteed precision
rapidly degrades within the relatively narrow dynamic range
of values that it can compress, Bit Grooming guarantees the
specified precision throughout the full floating-point range.
Data quantization by Bit Grooming is irreversible (i.e., lossy)
yet transparent, meaning that no extra processing is required
by data users/readers. Hence Bit Grooming can easily reduce
data storage volume without sacrificing scientific precision
or imposing extra burdens on users.

1 Introduction

The increased resolution of geoscientific models and mea-
surements (GSMMs) leads to increases in dataset size that
outpace improvements in both accuracy (nearness to true val-
ues) and precision (degree of repeatability). Numerical pre-
cision that exceeds true or assumed knowledge of the under-
lying phenomena is called false precision and a significant
fraction of GSMM storage bits archive this false precision as
essentially random (and therefore hard to compress) bits that
lack scientific content. Lossy compression techniques can re-
duce storage requirements without sacrificing scientific con-
tent by eliminating unused ranges and/or false precision of
stored fields. We introduce a new algorithm, Bit Grooming,
that preserves a specified level of precision, is statistically un-
biased, retains the full representable range of floating-point
data, and yet requires no additional software tools or filters
to read or write.

For measurements there is never a scientific reason to re-
tain false precision, as it amounts to storing random bits. Rea-
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sons to retain false precision during prognostic integrations
of geoscientific models include numerical stability, conser-
vation checks (e.g., mass, energy, momentum), and correct
treatment of threshold and resonance phenomena. There are
fewer reasons to retain false precision after than during a sim-
ulation. Most GSMMs store their data as either four- or eight-
byte IEEE floating-point numbers. IEEE single-precision
(SP, four-byte) and double-precision (DP, eight-byte) formats
(IEEE, 2008) represent 6 and 15 decimal digits of precision,
respectively. Even SP often exceeds the precision to which
the data are trusted. Lossy data compression can exploit the
gap between the precision representable by the data type (SP
or DP) and the precision associated with the values to be
stored.

Data compression is well-studied (e.g., Sayood, 2003; Sa-
lomon and Molta, 2010) and before attempting lossy data
compression, most researchers will check whether lossless
data compression adequately serves their needs. Widely used
lossless algorithms are embedded in ubiquitous (and free
and patent-unencumbered) tools such as gzip/zlib (Gailly and
Adler, 2000), bzip2 (Seward, 2007), and lz4 (Collet, 2013).
These tools operate on generic byte steams. Special-purpose
lossless compressors designed for scientific data can exploit
the four-byte or eight-byte structure of floating-point data
(e.g., Isenburg et al., 2005; Burtscher and Ratanaworabhan,
2009). Temporal and/or spatial correlations in GSMM data
with large-scale patterns (e.g., climate data) can further en-
hance lossless compression (Liu et al., 2014).

The compression ratios of lossless techniques are limited
by the need to recover the exact data compressed. Lossy com-
pression (also called quantization) relaxes this requirement
and can “trade off” precision for compression. Losses accept-
able with some forms of data can only be determined subjec-
tively, as for example the quality of photographic images. In
contrast, researchers can, at least in principle, know a pri-
ori the scientifically defensible precision of GSMMs. False
precision can mislead (by implying noise is signal) and be
scientifically pointless, especially for measurements. By con-
trast, lossy compression can be both economical (save space)
and heuristic (clarify data limitations). Data quantization can
thus be appropriate regardless of whether space limitations
are a concern. Thus after presenting our quantitative results,
we describe techniques that make Bit Grooming simple and
practical.

This paper is organized into four more sections. Section 2
describes the lossy and lossless compression algorithms that
this paper will intercompare. Section 3 defines the compari-
son metrics and evaluates the statistical properties and com-
pression ratios of Bit Grooming. Section 4 discusses imple-
mentation features of all lossy and lossless compression al-
gorithms in NCO, with particular focus on Bit Grooming.
Section 5 summarizes our conclusions.

2 Methods

A primary motivation in developing Bit Grooming is to re-
duce the storage of climate-related datasets. We implemented
and tested Bit Grooming in the netCDF Operators, NCO
(Zender and Mangalam, 2007; Zender, 2008), a freely avail-
able suite of tools for manipulating data stored in the netCDF
and HDF formats (Rew et al., 2006; HDF Group, 2015) that
are widely used in the geosciences for both modeled and
satellite-measured data. NCO implements or accesses four
different compression algorithms; one is lossless and three
are lossy. All four algorithms reduce the on-disk size of a
dataset while sacrificing no (lossless) or a specified amount
(lossy) of precision.

First, NCO can read and write data encoded with the
(lossless) DEFLATE algorithm (Deutsch, 1996) accessible
to both netCDF4 and HDF5 (Rew et al., 2006; HDF Group,
2015). DEFLATE is a widely used, freely available, and
efficient compression technique that combines Lempel–Ziv
compression (Ziv and Lempel, 1977, 1978) with Huffman
coding. It identifies patterns at the bit level and always iden-
tifies, encodes, and compresses space freed by the simple
Bit Shaving (setting to zero) and Bit Setting (to one) tech-
niques described here. DEFLATE works equally well on Bit
Grooming, which is simply an alternation between Bit Shav-
ing and Bit Setting. Some users and many data centers man-
ually DEFLATE and re-inflate netCDF3 files with gzip and
gunzip, respectively, so DEFLATE is effectively available for
all netCDF and HDF datasets. Hence our metrics will show
the volume of uncompressed data, the same data (losslessly)
deflated as the base case for compression, and the same data
(lossily) quantized with Bit Grooming in tandem with DE-
FLATE.

2.1 Packing

The three lossy compression algorithms NCO employs are
packing and two precision-preserving algorithms (includ-
ing Bit Grooming). Packing quantizes (usually) floating-
point data into a lower precision type (fewer bytes per
value) that represents a much smaller range. By conven-
tion netCDF defines a linear-packing algorithm that de-
pends on two parameters (scale_factor and add_offset)
(Rew et al., 2016; Caron, 2014a). Linear Packing quan-
tizes SP and DP data into (usually) two-byte signed integers.
NetCDF uses the nomenclature NC_FLOAT for SP (float32),
NC_DOUBLE for DP (float64), NC_SHORT for int16, and
NC_INT for int32. In netCDF nomenclature, packing con-
verts NC_FLOATs and NC_DOUBLEs into NC_SHORTs.
Since packing works at the byte level, the space saved
is usually a factor of 2 (NC_FLOAT →NC_SHORT) or 4
(NC_DOUBLE→NC_SHORT), and cannot be specified at
finer levels. Packed data can be (losslessly) deflated for addi-
tional space savings.
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Packing floating-point data into integers has benefits and
drawbacks. The type conversion frees up the IEEE754 expo-
nent bits (8 bits for SP, and 11 bits for DP), which then con-
tribute to the dynamic range of the packed integers (16 and
32 bits for NC_SHORT and NC_INT, respectively). How-
ever, integers have a much-reduced dynamic range relative
to floating-point numbers. The dynamic ranges of SP and DP
numbers are ∼ 1037 and ∼ 10308, respectively, whereas data
packed linearly into two-byte and four-byte integers have dy-
namic ranges of ∼ 105 and ∼ 1010, respectively. Variables
packed as NC_SHORT, for example, can represent only about
64 000 discrete values in the range −32768× scale_factor+
add_offset to 32767×scale_factor+add_offset. The optimal
add_offset parameter for Linear Packing is the midpoint of
the data to be packed, and the optimal scale_factor is the
data dynamic range (i.e., maximum minus minimum) divided
by 216

−1= 65 535 (Zender, 2016a). Unpacked values must
cluster within a dynamic range of ∼ 105 that may itself re-
side anywhere within the full (∼ 1037) floating-point range.
Thus archived fields that meaningfully span more than 5 or-
ders of magnitude (equals 5 decades) are not well-suited for
Linear Packing into two-byte integers. The presence of such
fields depends on the GSMM. Candidates in climate models
include aerosol number concentrations, pressure, solar heat-
ing rates, and (some) tracer mixing ratios. Astrophysical and
stellar models span larger scales and are replete with such
fields, e.g., plasma density, pressure, and thermal radiation.

Another limitation of Linear Packing is that the preci-
sion of packed data cannot be specified or guaranteed in ad-
vance because it depends on the distribution of the values
to be packed. While the numeric resolution (i.e., the small-
est resolvable difference) of unpacked data always equals
scale_factor, the number of significant digits of precision
depends on the dynamic range (maximum minus minimum)
of values to quantize, and rapidly degrades beyond the first
decade of unpacked values. To illustrate this, consider a
pressure field p (Pa) uniformly spanning values 0.0≤ p ≤
65 535.0. Linear Packing exactly represents integer values in
this range and quantizes all fractional values to integers. For
example, p = 1.23456 Pa and p = 65 534.23456 Pa would
be quantized as 1 and 65 534, respectively, which have 1
and 4 significant digits (nsd= 1 and 4 in the terminology
defined in Sect. 2.2 below), respectively. Packing this dis-
tribution of values achieves its highest precision (4 decimal
digits for two-byte integers) only for the greatest (in abso-
lute value) unpacked value. Unpacked values of lesser mag-
nitude lose precision at a rate of approximately 1 significant
digit per decade from the maximum. Since the precision of
Linear Packing degrades by about 1 digit per decade, only
values within 1 decade of the maximum regularly achieve
the highest possible precision (4 decimal digits for two-byte
integers). This is the maximum precision that packing guar-
antees for an arbitrary distribution of values.

Consider the same dynamic range used previously except
now offset by 105 (i.e., add_offset= 105); so, 100 000.0≤

p ≤ 165 535.0. The previously examined values, offset by
105, are p = 100 001.23456 Pa and p = 165 534.23456 Pa.
These would be quantized as 100 001 and 165 534, re-
spectively, which both have 6 significant digits. Thus the
add_offset parameter can provide additional precision to un-
packed values, bringing the total precision up to 6 digits, for
some but not all distributions of values. Except where other-
wise indicated in this work we state the best precision that
a compression algorithm guarantees for any distribution of
values, not the best precision it can achieve for special distri-
butions of values.

2.2 Precision-preserving compression

The other two lossy compression algorithms considered both
perform precision-preserving compression (PPC). The op-
erational definition of “significant digit” in our precision-
preserving algorithms is that the exact value, before rounding
or quantization, is within one-half of the value of the dec-
imal place occupied by the least significant digit (LSD) of
the rounded value. For example, the value π = 3.14 correctly
represents the exact mathematical constant π to 3 significant
digits because the LSD of the rounded value (i.e., 4) is in
the one-hundredths digit place, and the difference between
the exact value and the rounded value is less than one-half of
one one-hundredth, i.e., 3.14159265358979323844−3.14=
0.00159< 0.005.

One PPC algorithm preserves the specified total number
of significant digits (NSD) of the value. For example, there
is only one significant digit in the weight of most “eight-
hundred pound gorillas” that you will encounter, i.e., so
nsd= 1. NSD is the most straightforward measure of pre-
cision, and is the default PPC algorithm in NCO. Bit Groom-
ing combines two NSD algorithms (described below) to yield
more accurate statistical properties.

The other PPC algorithm preserves the number of deci-
mal significant digits (DSD), i.e., the number of significant
digits following (positive, by convention) or preceding (neg-
ative) the decimal point. For example, 0.008 and 800 have,
respectively, 3 and −2 decimal digits following the decimal
point, and correspond to dsd= 3 and dsd=−2.

Their fundamental difference is that NSD is independent
of dimensional units and DSD is not. The NSD for a given
GSMM value depends on the intrinsic accuracy and error
characteristics of the model or measurements. The appro-
priate DSD for a given value depends on these intrinsic
characteristics and, in addition, the dimensional units with
which values are stored. Our eight-hundred pound gorilla has
nsd= 1 regardless of whether the value is stored in pounds
or in some other unit. The DSD corresponding to this weight
is dsd=−2 if the value is stored in pounds (8× 102 lb), and
dsd= 4 if stored in megapounds (8× 10−4 Mlb).
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2.3 Algorithms

The time penalty for compressing and uncompressing data
varies according to the algorithm. Silver and Zender (2016)
show that lossless compression dominates the total compres-
sion time, and that quantization via Bit Grooming or Lin-
ear Packing can actually shorten total compression time be-
cause they reduce the amount of data to compress. At least
in our implementations and for the purposes of this discus-
sion, a number of significant digit (NSD) algorithm quan-
tizes by bitmasking and employs no floating-point math. By
contrast, a decimal significant digit (DSD) algorithm quan-
tizes by rounding, and thus does require floating-point math.
Hence NSD is likely faster than DSD, though the difference
has not been measured.

NSD algorithms create a bitmask to alter the significand
(mantissa or fraction) of IEEE 754 floating-point data. For
instance, the bitmask for the NSD technique called Bit Shav-
ing is one for all bits to be retained and zero for ignored bits
(Caron, 2014b). The logical AND of this mask with the ex-
act IEEE value produces the quantized IEEE value. The bit-
mask for the NSD technique we call Bit Setting is zero for
retained bits and one for discarded bits. The logical OR of
this mask with the exact IEEE value produces the quantized
IEEE value. These algorithms assume that the number of bi-
nary digits (i.e., bits) necessary to represent a single base-
10 digit is ln(10)/ ln(2)= 3.32. The exact numbers of ex-
plicit mantissa bits retained for single- and double-precision
values are ceil(3.32×nsd)+1 and ceil(3.32×nsd)+2,
respectively. (The IEEE format includes a single mantissa
bit that is implicit and that is not included in these counts
because it consumes no memory.) This is more than pre-
dicted by the simple rule that the required number of bits
is nsd× ln(10)/ ln(2). The extra bits are the (experimentally
determined) overhead required to guarantee that terminal sig-
nificant digits are accurate to within half the minimal value
of their decimal position. Once the number of bits required
exceeds the IEEE SP and DP storage standards of 23 and 53
explicit mantissa bits, respectively, bitmasking is completely
ineffective. This occurs at nsd= 6.3 and 15.4, respectively.
To guarantee preserving 1–7 digits of precision, Bit Groom-
ing must retain 5,8,11,15,18,21, and 25 explicit mantissa
bits, respectively. Thus Bit Grooming (and IEEE) require the
DP format to guarantee nsd≥ 7.

The DSD algorithm, by contrast, uses rounding to re-
move undesired precision. The rounding zeroes the great-
est number of (base-2) significand bits consistent with the
desired (base-10) decimal precision. Our NCO implementa-
tion rounds with the internal math library rint() family of
functions that were standardized in C99. The exact algorithm
NCO employs is val= rint(scale×val)/scale, where scale
is the nearest power of 2 that exceeds 10prc and the inverse
of scale is used when prc< 0. For ppc= 3 or ppc=−2,
for example, we have scale= 1024 and scale= 1/128. Be-
cause our DSD algorithm rounds a base-10 integer to achieve

a base-10 precision, we call it the Decimal Rounding al-
gorithm. The Decimal Rounding algorithm implemented in
the nc3tonc4 software tool by J. Whitaker is distinct from
but consistent with and equivalent to (though not bit-for-bit)
NCO’s.

Maintaining non-biased statistical properties during lossy
compression requires special attention. Decimal Rounding
uses rint() to round toward the nearest even integer. Thus
our DSD algorithm has no systematic bias. However, NSD
algorithms use a bitmask technique that is susceptible to sta-
tistical bias. Zeroing all non-significant bits is guaranteed to
produce numbers quantized to the specified tolerance, i.e.,
half of the decimal value of the position occupied by the
LSD. However, always zeroing the non-significant bits re-
sults in quantized numbers that never exceed the exact num-
ber. Thus Bit Shaving produces a negative bias in statistical
quantities (e.g., the average) subsequently derived from the
quantized numbers. Likewise Bit Setting produces a positive
statistical bias. To avoid bias, Bit Grooming (our new NSD
algorithm) rounds non-significant bits down (to zero) or up
(to one) in an alternating fashion when processing array data.
In general, the first element is rounded down, the second up,
the third down, etc. Hence Bit Grooming can nearly elimi-
nate the mean quantization bias. Our Bit Grooming imple-
mentation has one exception to the rule of alternately setting
and shaving bits: never quantize upwards the floating-point
value of zero. This exception prevents creation of quantiza-
tion fluctuations in arrays of zeros. Finally, for simplicity,
our implementation of Bit Grooming always rounds scalars
downwards.

To demonstrate the change in IEEE representation caused
by quantization, consider again the case of π , represented
as an NC_FLOAT: the IEEE 754 single-precision representa-
tions of the exact value (3.141592...), the value with only 3
significant digits treated as exact (3.140000...), and the value
as stored (3.140625) after NSD (prc= 3) and DSD (prc= 2)
quantization (Table 1). The string of 16 trailing zero-bits in
the rounded values facilitates both byte-stream and bitwise
compression. NSD and DSD algorithms do not always pro-
duce results that are bit-for-bit identical, although they do in
this particular case when the NSD algorithm is Bit Grooming
or Bit Shaving (which are identical algorithms for a single
scalar value). When the NSD algorithm is Bit Setting we ob-
tain the fifth row where insignificant bits are set to one, not
zero.

Reducing the preserved precision of NSD rounding pro-
duces increasingly long strings of identical bits amenable to
compression (Table 2).

The consumption of about 3 bits per digit of base-10 pre-
cision is evident, as is the coincidence of a quantized value
that greatly exceeds the mandated precision for NSD= 2.
Although the NSD algorithm generally masks some bits
for all nsd≤ 6 (for NC_FLOAT), compression algorithms
like DEFLATE may need byte-size-or-greater (i.e., at least
eight-bit) bit patterns before their algorithms can take advan-
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Table 1. Exact and lossy IEEE single-precision floating-point Pi. IEEE-754 single-precision binary representations of π stored exactly, with
3 significant digits, and with three quantization algorithms.

Signa Exponentb Significandc Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact π
0 10000000 10010001111010111000011 3.14000000 Three significant digits
0 10000000 10010010000000000000000 3.14062500 DSD= 2 (Decimal Rounding)
0 10000000 10010010000000000000000 3.14062500 NSD= 3 (Bit Shaving)d

0 10000000 10010010000111111111111 3.14160132 NSD= 3 (Bit Setting)

a Bit 0 is s, which the IEEE-754 format uses to encode signedness as −1s .
b Bits 1–8 form base-2 exponent q in the factor 2q−127, which in IEEE-754 multiplies the significand.
c Bits 9–31 are base-2 significand (or mantissa or fraction) c in the IEEE-754 representation of the full value −1s × (1+ c)× 2q−127.
d Bit Grooming and Bit Shaving are identical for a single value.

Table 2. Bit Grooming Pi. Same as Table 1 but after varying degrees of Bit Grooming.

Sign Exponent Fraction (significand) Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact
0 10000000 10010010000111111011011 3.14159265 NSD= 8
0 10000000 10010010000111111011010 3.14159262 NSD= 7
0 10000000 10010010000111111011000 3.14159203 NSD= 6
0 10000000 10010010000111111000000 3.14158630 NSD= 5
0 10000000 10010010000111100000000 3.14154053 NSD= 4
0 10000000 10010010000000000000000 3.14062500 NSD= 3
0 10000000 10010010000000000000000 3.14062500 NSD= 2
0 10000000 10010000000000000000000 3.12500000 NSD= 1

tage of encoding such patterns for compression. Do not ex-
pect significantly enhanced compression from nsd> 5 (for
NC_FLOAT) or nsd> 14 (for NC_DOUBLE). Clearly val-
ues stored as NC_DOUBLE (i.e., eight-byte) are susceptible
to much greater compression than NC_FLOAT for a given
precision because their significands explicitly contain 53 bits
rather than 23 bits.

3 Results

3.1 Metrics

How can one be sure lossy data are sufficiently precise?
We define several metrics to quantify quantization error. The
mean error ε and mean absolute error ε+ incurred in quantiz-
ing a variable from true values xi to quantized values qi are,
respectively,

ε =

∑i=N
i=1 µimiwi (xi − qi)∑i=N

i=1 µimiwi

and

ε+ =

∑i=N
i=1 µimiwi |xi − qi |∑i=N

i=1 µimiwi
,

where µi is 1 unless xi is a missing value,mi is 1 unless xi is
masked, and wi is the weight. The maximum and minimum

errors εmax and εmin are both signed

εmax =max(xi − qi)

and

εmin =min(xi − qi) ,

while the maximum and minimum absolute errors ε+max
and ε+min are positive-definite.

ε+max =max |xi − qi | =max(|εmax| , |εmin|)

ε+min =min |xi − qi | =min(|εmax| , |εmin|)

Typically ε+min = 0 for quantization, since many exact values
need no quantization.

The three most important error metrics for quantization are
ε+max, ε+, and ε. The upper bound (worst case) quantization
performance is ε+max. The mean accuracy ε indicates whether
statistical properties of quantized numbers will accurately re-
flect the true values. However, ε allows positive and negative
offsets to compensate each other and conceal poor perfor-
mance. ε+ measures the absolute mean accuracy of quanti-
zation, so that all errors accumulate and (unlike ε) do not
compensate. The difference between ε+max and ε+ indicates
how much of an outlier the worst case error is.

www.geosci-model-dev.net/9/3199/2016/ Geosci. Model Dev., 9, 3199–3211, 2016
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3.2 Bit Grooming vs. Bit Shaving

Traditional Bit Shaving bit-shifts zeros into the least sig-
nificant bits (LSBs) of true values (Caron, 2014b). Thus
Bit-Shaving nearly always underestimates true values, and
this produces εmax = 0. Conversely, bit-shifting ones into the
LSBs, a procedure that might be called Bit Setting, would
nearly always overestimate true values and result in εmin = 0.
The intrinsic compression efficiencies of Bit Shaving and Bit
Setting are identical. The key innovation in Bit Grooming is
to alternately bit-shift zeroes and ones into the consecutive
true values in an array. By alternating high with low quanti-
zation errors, Bit Grooming balances the mean quantization
error. As a result, statistical operations produce less-biased
results when operating on values quantized by Bit Grooming
than by Bit Shaving or Bit Setting. Balanced algorithms like
Bit Grooming should yield εmax ≈−εmin, ε+max ≈ ε

+

min, and
ε ≈ 0.

All three metrics are expressed in terms of the fraction of
the tens place occupied by the LSD. If the LSD is the hun-
dreds digit or the thousandths digit, then the metrics are frac-
tions of 100 or 1/1000, respectively. PPC algorithms should
produce maximum absolute errors less than 0.5 in these units.
If the LSD is the hundreds digit, then quantized versions of
true values will be within 50 of the true value. It is much eas-
ier to satisfy this tolerance for a true value of 100 (only 50 %
accuracy required) than for 999 (5 % accuracy required).
Thus the minimum accuracy guaranteed for nsd= 1 ranges
from 5 to 50 %. For this reason, the best and worst cast per-
formances usually occur for true values whose LSD value is
close to 1 and 9, respectively. Of course most users prefer
prc> 1 because accuracies increase exponentially with prc.
Continuing the previous example to prc= 2, quantized ver-
sions of true values from 1000 to 9999 will also be within 50
of the true value, i.e., have accuracies from 0.5 to 5 %. In
other words, only 2 significant digits are necessary to guaran-
tee better than 5 % accuracy in quantization. We recommend
that dataset producers and users consider quantizing datasets
with nsd= 3. This guarantees an accuracy of 0.05 to 0.5 %
for individual values. Statistics computed from ensembles of
quantized values will, assuming the mean error ε is small,
have much better accuracy than 0.5 %. This accuracy is the
most that many applications can justify.

To demonstrate these principles we conduct error analy-
ses on an artificial, reproducible dataset, and on an actual
dataset1 of values from a re-analysis of observed weather
data. Table 3 summarizes quantization accuracy for each
NSD based on the three metrics: the maximum absolute er-
ror ε+max, the mean absolute error ε+, and the mean error ε.
PPC quantization performs as expected. First, absolute max-

1The artificial dataset employed is one million evenly spaced
values from 1.0 to 2.0. The analysis data are N = 13 934 592 val-
ues of the temperature field from the NASA MERRA analysis of
20 130 601.

imum errors ε+max < 0.5 for all prc. We increased the exact
number of bits shaved or groomed until the worst perfor-
mance (ε+max = 0.49 for prc= 3) was better than ε+max = 0.5.
This guarantees that Bit Grooming always produces preci-
sion that meets or exceeds the requested number of signifi-
cant digits.

For 1≤ prc≤ 6, quantization results in comparable max-
imum absolute and mean absolute errors ε+max and ε+, re-
spectively (Table 3). Mean errors ε are orders of magni-
tude smaller because quantization produces over- and under-
estimated values in balance. When prc= 7, quantization of
single-precision values is ineffective, because all available
bits are used to represent the maximum precision of 7 dig-
its. The maximum and mean absolute errors ε+max and ε+

are nearly identical across algorithms, precisions, and dataset
types. This is consistent with both the artificial data and
empirical data being random, and thus exercising equally
strengths and weaknesses of the algorithms over the course of
millions of input values. We generated artificial arrays with
many different starting values and interval spacings, and all
gave qualitatively similar results. The results presented are
the worst obtained.

The artificial data have a much smaller mean error ε than
the observational analysis. The reason why is unclear. It may
be because the temperature field is concentrated in particular
ranges of values (and associated quantization errors) preva-
lent on Earth, e.g., 200< T < 320. It is worth noting that the
mean error ε < 0.01 for 1≤ prc< 6, and that ε is typically
at least 2 or more orders of magnitude less than ε+max. Thus
quantized values with precisions as low as prc= 1 still yield
highly significant statistics by contemporary scientific stan-
dards.

3.3 Compressing real climate datasets

PPC quantization enhances compression of typical climate
datasets. The degree of enhancement depends, of course, on
the required precision. Model results are often computed as
NC_DOUBLE and then archived as NC_FLOAT to save space,
while, in our experience, observations are usually stored as
NC_FLOAT because most sensors lack the precision required
to justify NC_DOUBLE. We evaluated compression perfor-
mance of lossless and lossy compression techniques on four
datasets representative of model simulations and satellite re-
trievals. Only floating-point data were compressed. No at-
tempt was made to compress integer-type variables as they
occupy an insignificant fraction of most climate datasets.

The first dataset tested (Table 4) comes from a global
aerosol simulation (Zender et al., 2003) of horizontal resolu-
tion latitude × longitude= 64× 128 (i.e., 8192 grid points).
This dataset is the smallest (35 MB, Row A) relative to the
others tested, and was produced uncompressed, as is still the
norm for most climate models. Weak and strong compression
(BZ1 and BZ9) with bzip2 (Seward, 2007) both achieve com-
pression ratios CR∼ 84 % (Rows B–C). Conversion from
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Table 3. Error metrics for Bit Grooming vs. Bit Shaving.

Artificial dataa Observed datab

BG and BSc BGSP BSSP BGDP BSDP BGSP BSSP BGDP BSDP
NSDd ε+max ε+ ε ε ε ε ε ε ε ε

1 0.31 0.11 4.1×10−4
−0.11 4.0×10−4

−0.11 2.4×10−3
−0.11 2.4×10−3

−0.11
2 0.39 0.14 6.8×10−5

−0.14 5.5×10−5
−0.14 3.8×10−4

−0.14 3.9×10−4
−0.14

3 0.49 0.17 1.0×10−6
−0.17 −5.5×10−7

−0.17 −9.6×10−5
−0.17 -5.3×10−5

−0.18
4 0.30 0.11 3.2×10−7

−0.11 −6.1×10−6
−0.11 2.3×10−3

−0.11 2.7×10−3
−0.11

5 0.37 0.13 3.1×10−7
−0.13 −5.6×10−6

−0.13 2.2×10−3
−0.13 6.5×10−3

−0.13
6 0.36 0.12 −4.4×10−7

−0.12 −4.1×10−7
−0.17 1.7×10−2

−0.11 6.1×10−2
−0.11

7 0.00 0.00 0.0 0.00 1.5×10−7
−0.10 0.0 0.00 0.1 0.00

a Artificial data are N = 1 000 000 values spanning [1.0,2.0) in equal-increment steps of 1× 10−6.
b N = 13 934 592 values of the temperature field from the NASA MERRA analysis of 20 130 601.
c BG is Bit Grooming, BS is Bit Shaving, SP is single-precision, and DP is double-precision. Values for ε+max and ε+ are shown only once. They are identical to two
significant figures for BG and BS in both SP and DP, for both artificial and observed data.
d NSD is the number of significant digits.

Table 4. Compression ratios for low-resolution initially uncompressed model netCDF3 data.

Rowa Fmtb LLCc Qntd Rnge NSDf Sizeg CRh Methodi

A N3 –j – 1037
∼ 7 34.7 100.0 Uncompressed

B N3 BZ1 – 1037
∼ 7 28.9 83.2 Bzip2

C N3 BZ9 – 1037
∼ 7 29.3 84.4 Bzip2

D N7 – – 1037
∼ 7 35.0 101.0 Uncompressed

E N7 DF1 – 1037
∼ 7 28.2 81.3 DEFLATE

F N7 DF9 – 1037
∼ 7 28.0 80.8 DEFLATE

G N7 – LP 105
∼ 1–4 17.6 50.9 Linear Packing

H N7 DF1 LP 105
∼ 1–4 7.9 22.8 Linear Packing

I N7 DF1 BG 1037
∼ 7 28.2 81.3 Bit Grooming

J N7 DF1 BG 1037 6 27.9 80.6 Bit Grooming
K N7 DF1 BG 1037 5 25.9 74.6 Bit Grooming
L N7 DF1 BG 1037 4 22.3 64.3 Bit Grooming
M N7 DF1 BG 1037 3 18.9 54.6 Bit Grooming
N N7 DF1 BG 1037 2 14.5 43.2 Bit Grooming
O N7 DF1 BG 1037 1 10.0 29.0 Bit Grooming

a Row; also labels the compression configuration in that row.
b Format on disk: N3 for netCDF CLASSIC, N4 for NETCDF4, N7 for NETCDF4_CLASSIC (which comprises
netCDF3 data types and structures with netCDF4 storage features like compression), H4 for HDF4, and H5 for
HDF5. N4/7 means results apply to both N4 and N7 file types.
c Lossless compression method (if any) employed. Numbers prefixed by DF refer to the strength of the DEFLATE
algorithm employed internally by netCDF4/HDF5, while numbers prefixed by BZ refer to the block size employed
by the Burrows–Wheeler algorithm in bzip2.
d Quantization (lossy compression) method (if any) employed: BG for Bit Grooming and LP for the default ncpdq
linear-packing algorithm (convert floating-point types to NC_SHORT).
e Dynamic range of values compressible to indicated precision.
f Number of significant digits retained. The similarity symbol indicates the value is approximate, not guaranteed.
Full IEEE single precision has nsd∼ 7 and guarantees nsd≥ 6. Bit Grooming guarantees a specified number of
digits. Linear Packing achieves nsd&4 in the largest decade of unpacked values, decreasing by 1 digit per decade
to nsd&1 in the smallest decade of unpacked values.
g Resulting file size in MB.
h Compression ratio in %, i.e., file size after compression divided by its original size, times 100. Compression
ratios reported are relative to the size of the original file as distributed (e.g., by NASA). The original files in
Tables 4 and 5 were not yet compressed, and those in Tables 6 and 7 were already compressed.
i Compression method, if any. The Supplement provides full commands to reproduce results.
j A dash (–) indicates the associated compression feature was not employed.
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Table 5. Compression ratios for high-resolution initially uncompressed model data∗.

Row Fmt LLC Qnt Rng NSD Size CR Method

A N3 – – 1037
∼ 7 839.6 100.0 Uncompressed

B N3 BZ1 – 1037
∼ 7 581.8 69.3 Bzip2

C N3 BZ9 – 1037
∼ 7 580.8 69.2 Bzip2

D N7 – – 1037
∼ 7 823.2 98.1 Uncompressed

E N7 DF1 – 1037
∼ 7 503.7 60.0 DEFLATE

F N7 DF9 – 1037
∼ 7 491.3 58.5 DEFLATE

G N7 – LP 105
∼ 1–4 413.4 49.2 Linear Packing

H N7 DF1 LP 105
∼ 1–4 162.6 19.4 Linear Packing

I N7 DF1 BG 1037
∼ 7 503.6 60.0 Bit Grooming

J N7 DF1 BG 1037 6 485.0 57.8 Bit Grooming
K N7 DF1 BG 1037 5 427.6 50.9 Bit Grooming
L N7 DF1 BG 1037 4 346.2 41.2 Bit Grooming
M N7 DF1 BG 1037 3 289.6 34.5 Bit Grooming
N N7 DF1 BG 1037 2 229.2 27.3 Bit Grooming
O N7 DF1 BG 1037 1 161.4 19.2 Bit Grooming

∗ Notation as in Table 4.

netCDF3 (N3) to netCDF4 (N7) imposes a small penalty on
size due to the extra internal metadata used by the underlying
HDF5 format (Rew et al., 2006; HDF Group, 2015) (Row D).
Both the weak and strong HDF implementation of DEFLATE
(Deutsch, 1996) shrink the data to CR∼ 81 % (Rows E–F),
slightly better than bzip2 (Rows B–C). There continues to be
little difference between weak and strong lossless compres-
sion of a given mode (bzip2 or DEFLATE), so for brevity
in the following we focus on performance with weak (DF1)
DEFLATE compression (e.g., Rows H–O).

Packing SP floating-point data into two-byte integers
yields CR∼ 51 % (Row G). Lossless compression more than
halves that CR to ∼ 23 % (Row H). For this dataset, the
Bit Grooming range is 81≥CR≥ 29 % for 7≥ NSD≥ 1
(Rows I–O). Table 4 shows packing as having 1.NSD.4.
Packing (into two-byte integers) uses 16-bit integers, the
same as the number of mantissa bits Bit Grooming uses
(as discussed in Sect. 2.3, and including the implicit IEEE
bit) to guarantee NSD= 4. Section 2.1 describes why linear
Packing guarantees NSD & 4 precision only for the greatest
decade of unpacked values, and degrades to NSD & 1 for the
smallest decade of unpacked values.

The second dataset tested (Table 5) contains an atmo-
spheric GCM simulation (Dennis et al., 2012) on a higher
horizontal resolution unstructured grid (with 48 602 grid
points), and occupies 840 MB uncompressed (Row A). It is
about 15 % more susceptible to both bzip2 (Rows B–C) and
DEFLATE (Row E–F) compression than the dataset in Ta-
ble 4. The reasons for this are unclear, though at ∼ 25 times
the size of the first dataset, it seems possible that the internal
metadata stored by DEFLATE are more efficient with larger
datasets. Packing is nearly as efficient as before (Row G),
since the CR of packing is independent of the values packed.

The compressed packed data (Row H) reach CR∼ 19 %,
whereas the range of Bit Grooming is 60≥CR≥ 19 % for
7≥ NSD≥ 1 (Rows I–O).

NASA uses HDF4 format to store and distribute the
third dataset tested (Table 6). Satellite-borne remote sensing
datasets may be most commonly found in HDF4 format due
to its early availability and the long mission duration of satel-
lites. This dataset contains compressed (DF5) meteorologi-
cal data from MERRA re-analysis (Rienecker et al., 2011)
on a medium-resolution (latitude × longitude= 144× 288,
41 472 grid points) grid and is 244 MB compressed (Row A)
and 617–694 MB uncompressed (Rows D3–D4). bzip2 com-
pression has no effect on the dataset as distributed in HDF4
format (Row B). However, converting from HDF4 format
to netCDF4 format reduces its size by 13 % to CR∼ 87 %
(Rows D1–D2). Neither of these formats affords any help to
bzip2 (Rows B2–C). The uncompressed data occupy 10 %
less space in netCDF3 than in netCDF4 format (Rows D3–
D4). The HDF5 implementation of DEFLATE yields a mod-
erately more dynamic range (91 %≥CR≥ 85) (Rows E–F)
than in the previous two datasets. The reasons for this are
unclear. Packing once again yields a 50 % reduction relative
to the uncompressed dataset size (Row G), and compress-
ing that yields CR∼ 55 % (Row H). Bit Grooming yields
92≥CR≥ 41 % for 7≥ NSD≥ 1 (Rows I–O).

NASA uses HDF5 format to store and distribute the fourth
dataset tested (Table 7), which is representative of cur-
rent storage practices. HDF5 and netCDF4 are used by all
new satellite missions to our knowledge. This dataset con-
tains compressed (DF5) satellite retrievals, a swath from
the OMI instrument (Krotkov et al., 2008), in a curvilin-
ear (Time × Cross-track= 1644× 60, 98 000 grid points)
grid and is 30 MB compressed (Row A) and 50 MB un-
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Table 6. Compression ratios for high-resolution initially compressed observed HDF4 data.

Row Fmt LLC Qnt Rng NSD Size CR Method

A H4 DF5 – 1037
∼ 7 244.3 100.0 DEFLATE

B1 H4 BZ1 – 1037
∼ 7 244.7 100.1 Bzip2

D1 N4 DF5 – 1037
∼ 7 214.5 87.8 DEFLATE

D2 N7 DF5 – 1037
∼ 7 210.6 86.2 DEFLATE

B2 N4 BZ1 – 1037
∼ 7 215.4 88.2 Bzip2

C N4 BZ9 – 1037
∼ 7 214.8 87.9 Bzip2

D3 N3 – – 1037
∼ 7 617.1 252.6 Uncompressed

D4 N4/7 – – 1037
∼ 7 694.0 284.0 Uncompressed

E N4/7 DF1 – 1037
∼ 7 223.2 91.3 DEFLATE

F N4/7 DF9 – 1037
∼ 7 207.3 84.9 DEFLATE

G N4/7 – LP 105
∼ 1–4 347.1 142.1 Linear Packing

H N4/7 DF1 LP 105
∼ 1–4 133.6 54.7 Linear Packing

I N4/7 DF1 BG 1037
∼ 7 223.1 91.3 Bit Grooming

J N4/7 DF1 BG 1037 6 225.1 92.1 Bit Grooming
K N4/7 DF1 BG 1037 5 221.4 90.6 Bit Grooming
L N4/7 DF1 BG 1037 4 201.4 82.4 Bit Grooming
M N4/7 DF1 BG 1037 3 185.3 75.9 Bit Grooming
N N4/7 DF1 BG 1037 2 150.0 61.4 Bit Grooming
O N4/7 DF1 BG 1037 1 100.8 41.3 Bit Grooming

Table 7. Compression ratios for initially compressed HDF5 data.

Row Fmt LLC Qnt Rng NSD Size CR Method

A H5 DF5 – 1037
∼ 7 29.5 100.0 DEFLATE

B1 H5 BZ1 – 1037
∼ 7 29.3 99.6 Bzip2

D1 N4 DF5 – 1037
∼ 7 29.5 100.0 DEFLATE

B2 N4 BZ1 – 1037
∼ 7 29.3 99.6 Bzip2

C N4 BZ9 – 1037
∼ 7 29.3 99.4 Bzip2

D2 N4 – – 1037
∼ 7 50.7 172.3 Uncompressed

E N4 DF1 – 1037
∼ 7 29.8 101.3 DEFLATE

F N4 DF9 – 1037
∼ 7 29.4 99.8 DEFLATE

G N4 – LP 105
∼ 1–4 27.7 94.0 Linear Packing

H N4 DF1 LP 105
∼ 1–4 12.9 43.9 Linear Packing

I N4 DF1 BG 1037
∼ 7 29.7 100.7 Bit Grooming

J N4 DF1 BG 1037 6 29.7 100.8 Bit Grooming
K N4 DF1 BG 1037 5 27.3 92.8 Bit Grooming
L N4 DF1 BG 1037 4 23.8 80.7 Bit Grooming
M N4 DF1 BG 1037 3 20.3 69.0 Bit Grooming
N N4 DF1 BG 1037 2 15.1 51.2 Bit Grooming
O N4 DF1 BG 1037 1 9.9 33.6 Bit Grooming

compressed (Row D2). The dataset can be converted di-
rectly to netCDF4 (Row D1) at no additional cost in stor-
age. However, it cannot be converted to netCDF3 because
it uses so-called “enhanced” features (such as hierarchi-
cal groups) available only in netCDF4/HDF5. Once again
the already-compressed data are insensitive to the level of
DEFLATE (Rows E–F). Packing reduces the uncompressed
size by nearly 50 % (Row G), and compressing that yields

CR∼ 44 %. Bit Grooming yields 100≥CR≥ 33 % for 7≥
NSD≥ 1 (Rows I–O).

4 Discussion

PPC algorithms preserve all significant digits of every value.
The Bit Grooming (NSD) algorithm uses a theoretical ap-
proach (3.32 bits per base-10 digit), tuned and tested to en-
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sure the worst case quantization error is less than half the
value of the minimum increment in the least significant digit.
The Decimal Rounding (DSD) algorithm uses floating-point
math to round each value optimally so that it has the maxi-
mum number of zeroed bits that preserve the specified preci-
sion.

While Bit Grooming works on top of any lossless com-
pression technique, we demonstrated it with the DEFLATE
algorithm (Deutsch, 1996), which is free and ubiquitous.
Byte-stream compression techniques such as DEFLATE
(which is accessible through the netCDF4/HDF5 interfaces)
always compress strings of zeros and of ones more efficiently
than random digits. We expect the additional compression
achieved by Bit Grooming to remain roughly the same with
different underlying lossless compression techniques.

4.1 Comparison of lossy compression techniques

Factors influencing the choice of lossy compression tech-
nique include precision, accuracy, dynamic range, compres-
sion ratio, and portability (Silver and Zender, 2016). Sec-
tion 3 evaluates Bit Grooming performance alongside Lin-
ear Packing, a widely used, well-known lossy compression
method. Packing four-byte SP floating-point data into two-
byte integers produces a compression ratio CR∼ 50 % rel-
ative to uncompressed data (Tables 4–7, Row G). Lossless
compression more than halves that CR, so that Linear Pack-
ing followed by DEFLATE achieves ∼ 26 %≥CR≥ 19 %
(Row H) relative to uncompressed data. All other things be-
ing equal, a competitive lossy compression algorithm should
produce a comparable CR to be considered as a sensible
option to packing plus DEFLATE. For the tested datasets,
Bit Grooming produces 43≥CR≥ 21 % for NSD= 2 and
29≥CR≥ 15 % for NSD= 1 (Rows I–O) relative to uncom-
pressed data. Thus Bit Grooming is only competitive with
compressed packing if used aggressively (i.e., preserving
only 1 or 2 digits) and/or if other factors are considered as
important as CR.

These other factors may include the greater transparency,
dynamic range, and guaranteed precision of Bit Grooming
relative to packing. Regarding transparency, Bit-Groomed
data are valid IEEE floating-point data immediately suit-
able for analysis and plotting, whereas packed data must first
be unpacked and reconstituted into intelligible floating-point
data. Hence Bit-Groomed data are more portable than packed
data.

Another important consideration is precision. Bit Groom-
ing guarantees that its lossy quantization will preserve a
specified number of (decimal) significant digits. Packing into
two-byte integers always provides 16 bits for discretization,
which can potentially yield the same precision as Bit Groom-
ing, with NSD= 4. However, as described in Sect. 2.1, Lin-
ear Packing guarantees NSD & 4 precision only for the sin-
gle greatest decade of unpacked values. Unpacked values of
lesser absolute magnitude lose approximately 1 guaranteed

significant digit per decade. By contrast, Bit Grooming guar-
antees the specified minimum precision level over the en-
tire IEEE range. Other types of packing, e.g., logarithmic
packing or “layer packing”, can alleviate though not elimi-
nate precision issues that affect Linear Packing (Silver and
Zender, 2016). However, only Linear Packing is a netCDF
convention (Rew et al., 2016). Thus other forms of packing
are less portable than Linear Packing, which (as mentioned
above) is itself less portable than Bit Grooming.

In terms of range, Bit Grooming has the same dynamic
ranges as IEEE SP and DP data,∼ 1037 and∼ 10308, respec-
tively. Linear packing into two-byte integers (the usual case)
reduces the dynamic range to 216

−1= 65 535 discretely rep-
resentable values that lay in a 5-decade cluster within the
IEEE range. The greater range of Bit Grooming relative to
packing (∼ 1037 vs. 105) favors it for GSMM fields that span
multiple orders of magnitude, such as aerosol number con-
centrations, pressure, solar heating rates, and (some) tracer
mixing ratios.

4.2 Implementation in NCO

Offering multiple quantization and compression algorithms
with a consistent and simple interface is important so that
users can easily find the algorithm that best suits their needs.
This section describes the NCO implementation of the three
quantization algorithms and single lossless compression al-
gorithm that NCO exposes to user control. We focus on the
new PPC algorithms (Bit Grooming and Decimal Rounding)
whose characteristics are the subject of most of this study,
but we begin with a brief summary of the DEFLATE and
packing implementations that have been in NCO for 10–
20 years. NCO triggers lossless DEFLATE compression with
the -L switch followed by a compression-level argument on
a scale from 0 (no compression) to 9 (full compression, much
slower):

# DEFLATE compression level 5
ncks -L 5 in.nc out.nc

The NCO operator ncpdq performs packing quantization:

# Pack Data Quickly (quantization)
ncpdq in.nc out.nc

NCO implements numerous packing policies (which vari-
ables should be packed) and packing maps (which data type
should a higher-precision data type be stored as). The Users
Guide (Zender, 2016a) contains a full description of policies
and maps. Packing followed by lossless compression is sim-
ple and yields the most impressive compression ratios in Ta-
bles 4–7.

# Pack then compress
ncpdq -L 5 in.nc out.nc
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Although Bit Grooming instantly reduces data precision,
on-disk storage reduction occurs only once the data are com-
pressed either internally (e.g., by netCDF) or externally (by a
user-supplied mechanism). It is straightforward to compress
data internally using the built-in compression and decom-
pression supported by netCDF4/HDF5. For convenience,
NCO automatically activates file-wide DEFLATE deflation
level one (i.e., -L 1) when PPC is requested for any variable
in a netCDF4 output file. This makes PPC easier to use, since
the user need not explicitly specify deflation. Any explic-
itly specified deflation (including no deflation, or -L 0 with
NCO) overrides the PPC deflation default. If the output file is
netCDF3 format, NCO emits a message that suggests internal
netCDF4 or external netCDF3 compression. netCDF3 files
compressed by an external utility such as gzip accrue approx-
imately the same benefits (shrinkage) as netCDF4, although
with netCDF3 the user or provider must uncompress (e.g.,
gunzip) the file before accessing the data. There is no storage
benefit to rounding numbers and storing them in netCDF3
files unless such custom compression/decompression is em-
ployed. Without compression, one may as well maintain the
undesired precision.

NCO users can invoke PPC with the long option --ppc
var=prc, or give the same arguments to the synonyms
--precision_preserving_compression or
--quantize. Here var is the variable to quantize, and
prc is the precision. NCO assumes that prc specifies Bit
Grooming (i.e., NSD precision) so, e.g., T=2 means nsd= 2.
In NCO, users may prepend prc with a decimal point to
specify decimal rounding (i.e., DSD precision); e.g., T=.2
means dsd= 2. Bit Grooming precision must be specified
as a positive integer. Rounding precision may be a positive
or negative integer, and is specified as the negative base-10
logarithm of the desired precision, in accord with common
usage. For example, specifying T=.3 or T=.-2 tells the
Decimal Rounding algorithm to store only enough bits to
preserve the value of T rounded to the nearest thousandth or
hundred, respectively.

NCO users can specify the precision of an entire dataset
with many variables in one simple command. Setting var to
default has the special meaning of applying the associ-
ated PPC algorithm to all normal floating-point variables.
The exceptions, i.e., variables not affected by default,
include integer and non-numeric atomic types, dimensional
coordinates (such as longitude, latitude), and, in accor-
dance with the CF Metadata Convention (Gregory, 2003;
Eaton et al., 2016), variables mentioned in the bounds,
climatology, or coordinates attributes of any vari-
able. These exceptions prevent the coordinate grid itself, and
the variables needed to describe it, from losing precision.
Usually the coordinate grid is known to much higher pre-
cision than the fields stored on the grid. NCO applies PPC to
coordinate grid variables only if those variables are explicitly
specified (i.e., not with default=prc). NCO applies PPC
to integer-type variables only if those variables are explicitly

specified (i.e., not with the default=prc, and only if the
DSD algorithm is invoked with a negative prc). To prevent
PPC in NCO from applying to certain non-coordinate vari-
ables (e.g., gridcell_area or gaussian_weight),
explicitly specify a precision exceeding 7 (for NC_FLOAT)
or 15 (for NC_DOUBLE) for those variables. Since these
are the maximum representable precisions in decimal digits,
NCO turns off PPC (i.e., does nothing) when more precision
is requested.

NCO users access PPC through a single switch, --ppc,
repeated as many times as necessary. To request Bit Groom-
ing only for variable u, use, e.g.,

ncks -7 --ppc u=2 in.nc out.nc

The output file will preserve 2 significant digits of u. The
options -4 or -7 ensure a netCDF4-format output (regard-
less of the input file format) to support internal compression.
NCO recommends though does not require writing netCDF4
files after PPC. However, for conciseness the -4/-7
switches are omitted in subsequent examples. To maintain
data-processing provenance, NCO attaches attributes that in-
dicate the algorithm used and degree of precision retained
for each variable affected by PPC. The Bit Grooming (i.e.,
NSD) and Decimal Rounding (i.e., DSD) algorithms store
the attributes number_of_significant_digits and
least_significant_digit2, respectively. It is safe to
attempt PPC on input that has already been rounded. Vari-
ables can be made rounder, not sharper; i.e., variables can-
not be “un-rounded”. Thus PPC attempted on an input vari-
able with an existing PPC attribute proceeds only if the new
rounding level exceeds the old; otherwise, no new rounding
occurs (i.e., a “no-op”), and the original PPC attribute is re-
tained rather than replaced with the newer value of prc.

To request, say, 5 significant digits (nsd= 5) for all fields,
except, say, wind speeds u and v, which are only known to
integer values (dsd= 0) in the supplied units, use --ppc
twice:

ncks --ppc default=5 --ppc u,v=.0 in.nc
out.nc

To preserve 5 digits in all variables except coordinate vari-
ables and u and v, use the default option and separately
specify the exceptions:

ncks --ppc default=5 --ppc u,v=20 in.nc
out.nc

Specify the --ppc option any number of times to support
varying precision types and levels. Each option may aggre-
gate all the variables with the same precision:

ncks --ppc p,w,z=5 --ppc q,RH=4 --ppc
T,u,v=3 in.nc out.nc

2The nc3tonc4 tool by J. Whitaker adds the same attribute.
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This type of per-variable approach to PPC may yield the
best balance of precision and compression. It does require
that the dataset producer understand the intrinsic precision
of each variable treated in a non-default manner. For conve-
nience, variable names may be extended regular expressions.
This simplifies generating lists of related variables:

ncks --ppc Q.?=5 --ppc FS.?,FL.?=4 --ppc
RH=.3 in.nc out.nc

5 Conclusions

We introduced a new lossy and precision-preserving com-
pression (PPC) algorithm called Bit Grooming, and evalu-
ated it against its nearest cousin, Bit Shaving, as well as
against packing and lossless techniques. Bit Grooming re-
places the (unwanted) least significant bits of the IEEE sig-
nificand with a string of identical values that alternates be-
tween zeroes and ones for consecutive elements of an ar-
ray. We quantified the trade-offs involved in the choice of
lossy-packing technique for four climate-related datasets. We
found that PPC compression reduces the volume of single-
precision compressed data by roughly 10 % per decimal
digit quantized (or “groomed”) after the third such digit.
Bit Grooming reduces the storage space required by initially
uncompressed and compressed climate data by 25–80 and
5–65 %, respectively, for single-precision values (the most
common case for climate data) quantized to retain 1–5 deci-
mal digits of precision. Bit Groomed and Bit Shaved data are
equally efficiently compressed, and Bit Grooming eliminates
undesirable statistical artifacts of Bit Shaving. By alternately
using zero and one as the fill bit, Bit Grooming produces no
mean absolute bias, whereas Bit Shaving is negatively bi-
ased.

The lossy technique of Linear Packing, followed by loss-
less compression, produces significantly better compression
ratios than PPC algorithms like Bit Grooming for most preci-
sion levels. Bit Grooming yields comparable or better com-
pression than packing only when retaining 1 or 2 significant
digits of precision. Packing, however, can only encode val-
ues from a much smaller dynamic range than Bit Groom-
ing, and its guaranteed precision degrades rapidly (1 digit per
decade) outside the largest decade of values to be quantized.
Moreover, packed data require additional software overhead
to unpack. Bit Grooming, in contrast, works on all ranges of
floating-point values, has well-defined and guaranteed preci-
sion, and requires no additional software interface to read. By
understanding the trade-offs between precision, statistical ac-
curacy, numerical range and storage space of common lossy-
packing techniques, producers can make better decisions re-
garding how much precision to archive in their datasets, and
how to discard the false precision.

6 Code and data availability

NCO source code is available from GitHub at https://github.
com/nco. The NCO software version 4.6.1 (Zender, 2016b)
used to produce this paper is permanently archived with
doi:10.5281/zenodo.61341, though any version since 4.4.8
should be functionally equivalent with regards to features de-
scribed here. NCO executables are available on most mod-
ern Linux and OS X systems using standard commands (apt-
get install nco, brew install nco, conda install -c conda-forge
nco, dnf install nco, port install nco, yum install nco). Ad-
ditional binaries are available for easy installation; see the
homepage http://nco.sf.net for more details. Detailed docu-
mentation and help pages are also at http://nco.sf.net. The
Supplement details the commands and datasets necessary to
reproduce the results.

The Supplement related to this article is available online
at doi:10.5194/gmd-9-3199-2016-supplement.
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