Temperatures, heating rates, and vapour pressures

in the near-surface snow at the South Pole

Michael S. TOWN, 1 Edwin D. WADDINGTON, 2 Von P. WALDEN, 3

Stephen G. WARREN 4, 5

1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington, 98195-1640, USA

E-mail: mstown@atmos.washington.edu

2 Department of Earth and Space Sciences, University of Washington, Seattle, Washington, 98195-1310, USA

3 Department of Geography, University of Idaho, Moscow, Idaho, 83844-3021, USA

Revised for J. Glaciology, December 2007.
ABSTRACT.

A finite-volume model is used to simulate nine years (1995-2003) of snow temperatures at the South Pole. The upper boundary condition is skin-surface temperature derived from routine upwelling longwave-radiation measurements, while the lower boundary condition is set to the seasonal temperature gradient at 6.5 m, taken from prior measurements at the South Pole. We focus on statistics of temperatures, heat fluxes, heating rates, and vapour pressures in the top meter of snow, but present results from the full depth of the model (6.5 m). The monthly mean snow-air heat fluxes agree with results from previous studies performed at the South Pole. On shorter time scales, the heating rates and vapour pressures show large variability. Snow heat fluxes at the snow-air interface, which are between $\pm 5 \text{ W m}^{-2}$ in the monthly mean, can be greater than $\pm 20 \text{ W m}^{-2}$ on hourly time scales. On sub-daily time scales, heating rates exceed 40 K day^{-1} in the top 10 cm of the snow. Subsurface temperatures, and therefore heating rates, are more variable during winter (Apr-Sep), due to increased synoptic activity and the absence of a surface-based atmospheric temperature inversion during summer (Dec-Jan). The largest vapour pressures (60-70 Pa) and vertical gradients of vapour pressure are found in the top meter of snow during the short summer. In contrast, during the long winter, the low temperatures result in
very small vapour pressures and insignificant vapour-pressure gradients. The
high summertime vapour-pressure gradients may be important in altering the
isotopic composition of snow and ice on the Antarctic Plateau.
INTRODUCTION

Antarctic snow and firn have been the subject of numerous studies to understand the present-day climate and atmospheric composition of Antarctica, and to reconstruct past local and global Antarctic climate (e.g., Dalrymple and others, 1966; McConnell and others, 1998; Mosley-Thompson and others, 1999; Stauffer and others, 2004; Mayewski and others, 2005; Kawamura and others, 2006; Helmig and others, 2007). The snow surface plays a unique role in Antarctic climate. Its high albedo and high infrared emissivity often lead to surface-based atmospheric temperature inversions. Physically porous and optically transmissive, the snow is a site of significant heterogeneous photochemistry. The snow surface is a good insulator (Trenberth, 1983). However, enough energy is stored in the snow and released to the atmosphere to affect surface atmospheric temperatures on all time scales. Atmospheric energy is commuted to the snow through conduction, transport as water vapour or sensible heat through pore spaces, or “advection” deeper below the surface (i.e., buried by subsequent accumulation). The stored energy from summer is then gradually released to the atmosphere during the long winter. The magnitude of the mean snow heat flux, or reflux, (i.e., the degree to which the snow acts as an energy capacitor) depends on both the time and depth scale of interest.

Energy transfer within Antarctic snow is often presented as part of surface energy balance investigations. It is estimated through in situ measurements of snow temperatures (Dalrymple and others, 1966; Jackson, 1982; Carroll, 1982; Brandt and Warren, 1993, 1997), by modelling heat transfer in the snow (e.g., King and others, 1996; King and Connolley, 1997;
Town and others: Near-Surface Snow Temperatures, South Pole

Bintanja, 2000; Reijmer and Oerlemans, 2002; van As and others, 2005; van den Broeke and others, 2005, 2006), or as a residual of all other components in the surface energy balance (e.g., Bailey and Lynch, 2000). These studies show that the net heat fluxes into the snow (G) in Antarctica are usually small in the monthly mean, on the order of a few W m$^{-2}$, regardless of latitude, longitude, altitude, or continentality, when compared to monthly means of other components of the surface energy balance. For example, the monthly mean net radiation fluxes at Pionerskaya, East Antarctica (70°S, 95°E, 2700 m a.s.l.) during December and June are 24 W m$^{-2}$ and -28 W m$^{-2}$, respectively, approximately four times greater than the snow heat fluxes during those months. The monthly mean individual radiation components are on the order of 25-60 times greater than the monthly mean snow heat fluxes (Warren, 1996).

However, some studies have shown that G is much larger on time scales shorter than 1 month (e.g., Carroll, 1982; King and others, 1996; McConnell and others, 1998; Bintanja, 2000; Reijmer and Oerlemans, 2002; van As and others, 2005; van den Broeke and others, 2006) due to large and rapid changes in near-surface snow temperatures caused by rapid changes in atmospheric conditions. Surface temperatures in Antarctica are particularly sensitive to synoptic changes during winter due to the existence of a surface-based atmospheric temperature inversion. Changes in synoptic conditions that cause such effects are changes in cloud cover, surface wind speed, atmospheric temperature, and atmospheric humidity.

These studies highlight the importance of near-surface snow temperatures and heat fluxes
in the surface energy balance, which is important to a broad range of polar science. Operational and research-oriented models of polar climate and polar weather rely on accurate simulations of the surface energy balance to predict near-surface atmospheric temperatures. Unfortunately, snow heat fluxes are sometimes neglected or tuned to correct for other errors within these complex simulations. Inaccurate snow heat fluxes can feed back harmfully on other components of the surface energy balance in such simulations (e.g., Hines and others, 1999). Large temperature gradients in the near-surface snow may cause heterogeneous migration of trace chemical species within the snow (D. Davis, personal communication 2007).

There is also evidence that large, short-term changes in near-surface snow temperatures, and therefore pore-space vapour pressures, can affect the water stable isotopic content of near-surface snow (Town, 2007).

Despite awareness of the high snow temperature and energy flux variability in response to changing atmospheric conditions, there have been only a few systematic characterizations of these short-term processes. Bintanja (2000), van As and others (2005), and van den Broeke and others (2006) characterized the mean diurnal variability of the surface energy balance during summer in Dronning Maud Land. The mean influence of clouds on the diurnal surface energy balance cycle from the coast to the East Antarctic Plateau was further examined by van den Broeke and others (2006). Many of the studies listed above are seasonal, and/or limited to 1-3 years in duration. Therefore, systematic characterization of snow temperature
variability throughout an annual cycle, and interannual variability of snow temperature has not yet been reported for the East Antarctic Plateau.

To extend the quantitative understanding of annual cycles in snow temperatures and heat fluxes in Antarctica to sub-monthly and interannual time scales, we present results from a one-dimensional (1-D) model of snow temperatures for 9 years at the South Pole. We have chosen the South Pole for this project for several reasons. It is a well-established research station with a high quality, long-term data set. The data set is often used for testing of polar climate and forecast models (e.g., King and Connolley, 1997; Briegleb and Bromwich, 1998; Hines and others, 2004; Fogt and Bromwich, 2007). The South Pole is the site of numerous experiments on heterogeneous chemistry (e.g., McConnell and others, 1998; Chen and others, 2004; Davis and others, 2004; Hutterli and others, 2004), as well as the site of fundamental Antarctic climate studies (Dalrymple and others, 1966; Schwerdtfeger, 1970) and paleoclimate studies (e.g., Epstein and others, 1965; Aldaz and Deutsch, 1967; Jouzel and others, 1983). The short-term and interannual variability of snow temperatures and energy fluxes is important to each of these applications, and because of the small slope and spatial homogeneity of the East Antarctic Plateau around the South Pole, results for this location can be extrapolated to represent a much larger region of similar slope, altitude, and continentality.
Direct measurements of snow temperature have been made at the South Pole on several occasions (Dalrymple and others, 1966; Carroll, 1982; Brandt and Warren, 1993, 1997). There are several challenges associated with these measurements. In situ temperatures may be biased by solar heating; they are therefore most accurate during the polar night (Brandt and Warren, 1993, 1997). Accumulation will advect in situ probes away from the surface, so prolonged measurements of near-surface temperatures and heat fluxes require frequent attention. Installation of thermistors or other probes also disturbs snowpack temperatures and densities, affecting measurements of snow temperatures and estimates of snow heat fluxes.

Modelling temperatures and heat fluxes in polar snow is often done as an alternative to in situ measurements. Constrained by other components of the surface energy balance and atmospheric conditions, snow heat fluxes at the snow-air interface \(G \) are often modelled to determine snow temperatures (e.g., Greuell and Konzelmann, 1994; Bintanja, 2000; Reijmer and Oerlemans, 2002; van den Broeke and others, 2005; Liston and Winther, 2005; van den Broeke and others, 2006). In Antarctica, this methodology is most successful during the short summer (December-January) when the boundary layer is nearly isothermal, allowing accurate observation, or estimation, of both radiative and turbulent fluxes. Under the extremely stable conditions of the polar night both quantities are less accurate. Inaccuracies in radiative and turbulent fluxes feed inaccuracies into estimates of \(G \), and ultimately into snow temperatures.

Estimates of turbulent heat fluxes suffer more than radiative fluxes because current surface-
layer parameterisations have trouble simulating the intermittency of turbulence in extremely
stable boundary layers such as those found in Antarctica during winter (Mahrt, 1998; Pahlow
and others, 2001; Cheng and others, 2005). By contrast, the radiative flux measurements are
more straight-forward, requiring attention primarily to simple environmental factors such as
frost or blowing snow.

Alternatively, surface temperature can be used as an upper boundary condition (UBC) to
determine snow heat fluxes (e.g., King and others, 1996; King and Connolley, 1997). This
methodology only requires an accurate estimate of skin-surface temperature, which is an
effective integration of all the atmospheric energy fluxes into the snow, with the exception of
some subsurface absorption of solar radiation, which is addressed below.

In both cases, simulations are limited by knowledge of snow properties (density, ther-
amal conductivity, heat capacity). Over most of Antarctica there is no melting, so G can
be modelled as a pure advective-diffusive process, described below. Exceptions are found
mainly around the coast, in katabatic wind zones and blue ice areas (Bintanja, 2000; Liston
and Winther, 2005). Depending on the time scales of interest, downward advection of heat
(through accumulation) can also be neglected.

We use a 1-D, finite-volume model of heat conduction and flow to simulate temperatures in
the near-surface snow. Similar models have been used previously in Antarctica and Greenland
(e.g., King and others, 1996; King and Connolley, 1997; Greuell and Konzelmann, 1994;
Bintanja, 2000; Reijmer and Oerlemans, 2002; van den Broeke and others, 2005; Liston and
Winther, 2005; van den Broeke and others, 2006). Our model is based on the finite-volume method described in Patankar (1980). In this section we describe relevant features of our model, and how it is validated. We then show how the snow is parameterized, and describe the data used to simulate nine years of near-surface snow temperatures.

Finite-volume model

The finite-volume (FV) model used here is based on the differential equation for heat conduction and advection:

\[
\frac{\partial}{\partial t} (T) + \frac{\partial}{\partial z} (bT) = \frac{1}{\rho C_p} \frac{\partial}{\partial z} (k \frac{\partial}{\partial z} T) + \frac{S}{\rho C_p}.
\]

(1)

Here \(T\) is temperature, \(b\) is the advection rate (in this application it is the snow accumulation rate, \(b\)), \(k\) is the thermal conductivity, \(\rho\) is the snow density, and \(C_p\) is the heat capacity. \(\frac{k}{\rho C_p}\) is the snow thermal diffusivity. \(S\) is the source term, to be described below.

This formulation comes from an advective-diffusive equation for enthalpy (Patankar, 1980). The equation is applicable to any quantity that is subject to diffusion under a gradient or advection under fluid flow. Each term in equation (1) has units K s\(^{-1}\). The boundaries of the 1-D solution domain are fixed at the snow surface and at a specified depth.

In our case, the uppermost boundary is the transient surface (i.e., it is fixed with respect to the snow surface regardless of the accumulation rate, \(b\)). When significant accumulation is incorporated into the model, snow of a given \(T\) is pushed (advected) downward relative...
to the upper boundary of the model. On the right-hand side of equation (1), the first term represents the diffusion of heat down a temperature gradient. The second term on the right-hand side, the source term, accounts for any process that may change the temperature of a control volume, but that is not related to the processes of thermal diffusion or advection. One potential source-term process is absorption of solar radiation by near-surface snow. Heating of a control volume by absorption of solar radiation depends on the amount of the incident solar radiation, and on the microstructure and composition of the snow. In the model, it does not depend on the thermal diffusivity of the snow nor on the accumulation rate, but in reality both solar absorption and thermal diffusivity depend on snow grain size.

The model is illustrated in Figure 1. The solution for temperature at point P is fully implicit, meaning it depends on the most immediate previous values of temperature at point P as well as on the present unknown values at U and D. Other numerical solutions to equation (1) are possible, but are often not optimal either in interpretation, e.g. Taylor-series expansions, or in general applicability, e.g. variational formulation (Patankar, 1980).

Application of the finite-volume model to the near-surface snow at the South Pole

Our goal is to understand the heat and vapour content of the near-surface snow at the South Pole on time scales from minutes to years. The high degree of horizontal homogeneity of East Antarctica and the slow horizontal movement of the ice at the South Pole (approximately 10 m year$^{-1}$, Bingham and others, 2007) eliminates the need for horizontal conduction and advection of temperature in the model, allowing us to simplify the model to 1-D. There is
horizontal inhomogeneity in the snow surface in the form of sastrugi, which are wind-carved
snow structures of height 5-20 cm. They form primarily in the winter at the South Pole, but
become flattened by differential solar heating of their sides during summer (Gow, 1965). Such
small-scale horizontal temperature gradients are not represented in this model. Sensitivity
tests with the model indicated that the accumulation rate at the South Pole (approximately 80
mm yr\(^{-1}\) liquid water equivalent (lwe), Mosley-Thompson and others, 1999) does not advect
temperatures downward into the snow significantly relative to the rate at which temperatures
were conducted vertically during the 9-year time period, so advection is not included below.
Similar results were found in a modelling study of stable isotopes in firn at Taylor Mouth,
Antarctica, above the McMurdo Dry Valleys (Neumann and others, 2005).

We present results primarily from the top meter of the snow because deeper snow retains
little memory of synoptic variability. The model depth was set to 6.5 m. This is a compromise
between computation time, seasonal data available to constrain the lower boundary, a lower
boundary that is far enough away from the near-surface snow so as not to substantially affect
the results in the near-surface snow, and efficient use of available UBC data. A deeper lower
boundary condition (LBC) is possible, which would allow the use of a constant LBC rather
than the seasonally varying one employed. However, a deeper LBC model with a constant
temperature would substantially shorten the duration of our simulations because it would
require much more surface data for model initialization. A deeper LBC could also induce a
temperature bias in the model because the high interannual variability of mean annual surface
temperature (standard deviation of about 1 K at the South Pole) is still felt at 10 m depth. Therefore, setting a constant LBC at 10 m depth, for example, would require assuming a temperature at that depth that is likely to be biased by 0.3 K due to interannual variability of surface temperature.

The model snow properties are taken from Dalrymple and others (1966) (Figure 2b, c, d); they vary with depth but are kept constant in time. The heat capacity of the snow is 1710 J kg$^{-1}$ K$^{-1}$. It varies insignificantly with depth (Dalrymple and others, 1966), so is not shown.

The vertical resolution is 1 cm in the top 30 cm, then becomes step-wise coarser, to 50 cm at 2 m depth, and uniform at 50 cm from 2 to 6.5 m, as shown schematically in Figure 1. The model is constrained at its lower boundary by a climatological temperature gradient taken from the temperature profile cycle of Dalrymple and others (1966).

The UBC is a continuous time series of skin-surface temperature from 1994 through 2003 at 9-minute resolution derived from routine measurements of upwelling infrared radiation collected at the South Pole by the National Oceanic and Atmospheric Administration (NOAA) Earth and Space Research Laboratory - Global Monitoring Division (ESRL-GMD) with a downward-looking broadband pyrgeometer (sensitive to wavelengths 4-50 µm) with a heated dome, deployed 1 m above the snow surface. The infrared data were converted to skin-surface temperatures using the Stefan-Boltzmann law and a snow emissivity value of 0.98 (Warren, 1982). The longwave emission from snow comes from the top millimeter of snow. Therefore, the skin-surface temperature retrieved from longwave data represents the temperature
of the top millimeter. Comparison of skin-surface temperatures retrieved from longwave data to snow-surface temperatures measured by thermistors resting on the snow surface from the 2001 South Pole winter (Hudson and Brandt, 2005) show a high correlation ($r^2 > 0.99$), and mean residual of less than 1 K. The longwave infrared data set has three-minute resolution from 1994 to 1997, and 1-minute resolution from 1998 to 2003. A 9-minute running mean was applied to the entire data set, and missing data were filled in using linear interpolation prior to the conversion to temperature.

The only energy input into the model comes from the upper and lower boundary conditions. Solar heating of snow occurs during summer, but we do not include it explicitly. Most of the absorption is of near-infrared radiation, which occurs in the top few millimeters of snow (Figure 4 of Brandt and Warren, 1993), within the topmost half-volume (5 mm) of the model. This absorption is on the same order as the effective infrared emission depth of snow (<1 mm). Therefore, it is largely included by using the skin-surface temperature from the upwelling infrared data. Inclusion of solar heating in the source term is not physically compatible with a skin-surface temperature upper boundary condition, which will likely result in a small temperature maximum, as much as 0.2 K, will occur a few millimeters below the snow surface during December (Brandt and Warren, 1993).

If our model were instead constrained at the surface by radiative and turbulent energy fluxes, then absorption of solar radiation in the snow as a function of depth could be included. We decided against this approach because of the large potential uncertainty associated with es-
imating sensible heat fluxes on short time scales in extremely stable boundary layers, as mentioned earlier.

Heat can also be forced into the snow by wind-pumping (Colbeck, 1989). The extent to which this effect is significant depends on the square of the surface wind speeds and the height of the surface topography, both of which are greater on average during the winter. This process will likely serve to increase the effective thermal conductivity and pore-space water vapour transport within the snow. Wind pumping was found to be insignificant to heat transport below approximately 20 cm at the South Pole (Brandt and Warren, 1997), but may have a significant effect on snow temperatures closer to the surface under appropriate conditions (i.e., low temperature gradients or high wind speeds) (Albert and McGilvary, 1992).

Surface and subsurface melting has been modelled in Antarctic snow, but it has been found to be insignificant above an altitude of 2500 m (Liston and Winther, 2005). The elevation of the South Pole is 2835 m; we therefore do not consider its effects here in our model.

Snowmelt has never been reported at the South Pole.

Model behavior, initialization, and validation

The FV model was tested in several ways to assess its behavior, precision, and accuracy. A simulation of a simple scenario is shown in the inset in Figure 3. The snowpack is initially set to be isothermal at -40°C, with a constant surface temperature forcing of -30°C and a uniform thermal diffusivity. Figure 3 shows the error in the numerical results after two days by comparison to the analytical solution for this scenario (Carslaw and Jaeger, 1959, pp. 62-
The figure shows that the errors in the numerical FV model drop to the order of mK for a resolution of 1 cm and 2 min. These results indicate that the spatial resolution of the model in the top 30 cm is adequate to determine snow temperatures on short time scales under a steep temperature gradient, which often occurs in the top 30 cm of snow at the South Pole.

We also tested whether the model leaked energy, and if not, how long the model would take to converge on a repeatable annual cycle. Energy leakage is not likely in a finite-volume model of this construction. Initialized in this test as isothermal at -49.5°C, the mean annual surface temperature at the South Pole, the model took 1 year to converge. Our definition of convergence here is that the mean absolute value of the temperature profile residual between one day during the last (tenth) year of the simulation and the same day during a prior year is less than 0.5 K. For the simulations presented below, the model was initialized using the December 31 temperature profile from Dalrymple and others (1966) taken during their 1957-8 field season. Using a realistic profile of snow temperatures facilitates much faster model spin-up.

The FV model results are sensitive to the shape and magnitude of the seasonally varying temperature gradient used as the model’s LBC (not shown). The seasonally varying temperature gradient at 6.5 m from Dalrymple and others (1966) is not a simple sinusoid or annually symmetric; it ranges from 0.95 K m$^{-1}$ in November to -0.5 K m$^{-1}$ in March. It does not integrate to zero. Thus, there is a bias of 0.2 K m$^{-1}$ in the LBC, which results in a positive absolute bias less than 0.5 K in the top 1 m of the model, but the bias is as large as 1.5 K at a
depth of 5 m. Given the larger potential biases in the lowest 2.5 m of the model, we generally present data only for the top 4 m of the snow, particularly in the tables below. Rather than adjust the observed LBC to average to zero annually, which would impose our own expectations on the length and/or magnitude of the cooling and warming seasons at 6.5 m, we accept that the measurements may cause a small bias in our results.

A further positive 1 K bias may exist in our results due to the use of a low snow emissivity in the skin-surface temperature retrieval from longwave upwelling fluxes. We used an emissivity of 0.98 (Warren, 1982); however, the effective emissivity may actually be 0.99 or greater, including the reflection of atmospheric longwave emission (Hori and others, 2006). A final bias, as stated earlier, exists due to the exclusion of solar heating of the snow. This bias is small and negative, -0.2 K (Brandt and Warren, 1993), in the top few millimeters during summer.

Uncertainties in temperatures, heating rates, and heat fluxes were determined through propagation of errors in the Stefan-Boltzmann law, heat-flux, and heating-rate equations, and are listed in Table 1. The values quoted in Table 1 are for 9-minute values; the random errors decrease substantially when averaged over hours or days.

SNOW TEMPERATURES, HEATING RATES, AND VAPOR PRESSURES

The heat fluxes and vapour pressures in the near-surface snow at a given point in time and space are the result of its integrated response to the instantaneous radiative and turbulent forc-
ings at the surface and to the heat stored in the snow from previous months and years. Based on monthly mean energy balance at the snow surface for this time period (Town, 2007), it appears that radiation and sensible heat fluxes are the most important forcings for the skin-surface temperature. They are on order of 10-20 W m\(^{-2}\) throughout the year, and of opposite sign. Frost deposition and sublimation are second-order contributors due to the low temperatures, a net deposition of 2-3 mm over the annual cycle. However, these results are subject to the uncertainties in parameterisations of the stable boundary layer mentioned earlier.

In this section we first give a brief summary of relevant features of the climate of the South Pole, to place the significance of the FV model results in perspective relative to the atmospheric surface forcing. In the subsequent subsections, we present our results for subsurface temperatures, snow heat fluxes and heating rates, and pore-space vapour pressures. We have simulated ten years (1994-2003) of snow temperatures, heating rates, and vapour pressures, though we present only the last nine years (1995-2003) owing to the one year of model equilibration.

The climate of the South Pole

The climate of the South Pole has been studied extensively since the International Geophysical Year (IGY, 1957-1958). Aspects of the climate and weather of the South Pole relevant to this work are presented and/or reviewed by Dalrymple and others (1966), Schwerdtfeger (1970, 1984), Carroll (1982), King and Connolley (1997), Neff (1999), Hudson and Brandt (2005), and Town and others (2005, 2007). It has been shown by these workers, and others,
that the South Pole, and most of the East Antarctic Plateau, has an annual temperature cycle with a *coreless* winter (Figure 4); i.e., a winter with no well-defined minimum in temperature (Warren, 1996). Figure 4 shows that the day-to-day variability in 2-m atmospheric temperature is much greater during winter than during summer. The surface winds (not shown) are stronger on average during winter (approximately 6 m s$^{-1}$) than during summer (approximately 4 m s$^{-1}$). However, daily variability in wind speed varies little throughout the year.

The association between 2-m temperature, wind speed, cloud cover, and regional weather patterns at South Pole was examined by Neff (1999) and by Town and others (2007). In general, cloud cover is associated with higher temperatures and higher wind speeds throughout the year. This association is due to alternating influences of relatively strong cyclonic weather systems originating from the coast and calm geostrophic flow circulating along elevation contours of the East Antarctic Plateau. In general, the cyclonic, synoptic weather advects heat, moisture, and cloud cover to the South Pole from the Weddell and Bellingshausen Seas. The anticyclonic, geostrophic flow aloft is set up by radiative cooling of the surface to space. This cooling generates a downslope pressure gradient that is balanced by the Coriolis force. Near the surface, the geostrophic force balance is perturbed by friction, directing some of the flow downslope. This is known as an inversion wind (Schwerdtfeger, 1984), which is the source of katabatic winds at the coast of Antarctica.

The correlation of higher temperatures with cloud cover is stronger during winter than during summer. Episodic fluctuations in 2-m atmospheric temperature of up to 30 K are pos-
sible during winter, whereas synoptically similar episodes have much smaller effects during summer. This is due primarily to three factors. The southern-hemisphere winter is typically more stormy than the southern-hemisphere summer (Simmonds and others, 2003). Over the Antarctic Plateau this means that there is more cyclonic activity to advect heat and moisture toward the South Pole during winter. In addition, the temperature gradient from the Southern Ocean to the continental interior is steeper during winter. Therefore, cyclones that do reach the South Pole will be warmer relative to ambient conditions than their summertime counterparts. Finally, the lack of solar heating during winter allows strong surface-based atmospheric temperature inversions under clear skies. The temperature inversions are very sensitive to changes in wind speed and cloud cover. Therefore, 2-m atmospheric temperatures fluctuate more on short time scales during winter than summer in response to similar changes in synoptic conditions.

Subsurface temperatures

The seasonal cycle of near-surface snow temperatures has been reported, or utilized, by many workers around Antarctica: Dronning Maud Land (e.g., Bintanja, 2000; Reijmer and Oerlemans, 2002; Liston and Winther, 2005; van As and others, 2005; van den Broeke and others, 2005, 2006), West Antarctica (e.g., Morris and Vaughan, 1994), the Antarctic Coast (e.g., King and others, 1996), the South Pole (Dalrymple and others, 1966; Jackson, 1982; Carroll, 1982; Brandt and Warren, 1993, 1997; McConnell and others, 1998), and multiple other locations (e.g., King and Connolley, 1997; Bailey and Lynch, 2000). The short-term variability of
near-surface snow temperatures has been illustrated by a subset of those above (King and oth-
ers, 1996; McConnell and others, 1998; Bintanja, 2000; Reijmer and Oerlemans, 2002; van
As and others, 2005; van den Broeke and others, 2005, 2006). However, the short-term vari-
ability and the interannual variability of near-surface snow has yet to be quantified, beyond
summertime investigations of the diurnal cycle.

We first present the mean annual cycle of skin-surface temperature and the mean annual
cycle of snow temperatures (Figure 5a,b). These results compare well with the in situ data
from 1958 (Dalrymple and others, 1966) and the winter of 1992 (Brandt and Warren, 1997),
within the internannual variability shown in Figure 5d.

The mean short-term variability is shown in Figure 5c. Most of the temperature variability
on short time scales is contained in the topmost meter. In general, the snow shows greatest
variability during winter. The two-week variability at 1 m depth is greatest during February-
April and November-December. During these times, the snowpack is cooling or warming
in response to the large seasonal change in atmospheric temperature as well as responding
to synoptic variability. Interannually, greater variability is found during winter than during
summer (Figure 5d). These data are compiled as monthly means and standard deviations in
Tables 2 and 3 for use in climate or forecast model validations, heterogeneous chemistry
studies, or other glaciology applications.

Figures 6 and 7 further illustrate the dynamics of subsurface temperatures on short time
scales. The largest variability in temperature is at the surface, as indicated by the 5 and 95%
extremes shown in Figure 6. The variability in temperature in the top 50 cm during January and July is due primarily to synoptic weather influences (i.e., changes in radiative and turbulent fluxes) at the South Pole, with changes in solar elevation playing a minor role during January. The spread in temperatures is larger in July than in January due to the sensitivity of the surface-based atmospheric temperature inversion to changes in the surface energy balance. During July, there is little variability below 1 m because there is not a strong, consistent temperature gradient between the surface and the bottom boundary of the model to force significant changes in temperature. January shows some variability in temperatures between 2 and 4 m depth as the warm pulse from November and December diffuses into the snow. During March and November, however, the near-surface snow shows a broad distribution of temperatures due to both synoptic weather influences and changes in solar elevation.

Sub-daily variability in the top meter of snow is shown for these four months of 1996 in Figure 7. The panel above each contour plot shows the skin-surface temperature. The influence of synoptic variability on the temperature profiles is evident from these panels. The snow shows significant variability in the top 30 cm during summer (January) due to fluctuations of the skin-surface temperature on hourly, or longer, time scales. Below 30 cm, temperature variations with time and depth are less dramatic. Larger variability in skin-surface temperatures during winter leads to increased temperature variations in the topmost snow. These large temperature fluctuations puncture deeper during winter due to the stronger surface forcing. The dual influences of dramatically changing solar irradiance and synoptic variability are evident
in Figure 7 for March and November. The seasonal warming or cooling of the snow during these transitional months, illustrated as wide distribution boundaries in Figure 6, is shown as steadily sloping temperature contours in Figure 7.

Figure 7 shows clearly that temperature gradients in the near-surface snow can change direction several times in a given month in response to variable synoptic conditions. This will be important in estimating short-term snow heat fluxes, and may have significant implications in studies of snow metamorphism.

Snow heat fluxes and heating rates

Using profiles of thermal conductivity, heat capacity, and temperature, we computed snow heat fluxes and heating rates from the implicitly computed snow temperatures. The snow heat fluxes were calculated as linear gradients in snow temperature multiplied by the thermal conductivity of the snow at that depth. Heating rates were computed as the divergence of the snow heat fluxes into a volume. The snow heat fluxes at the snow-atmosphere interface \((G)\) are shown in Figure 8. They were computed from the topmost two temperatures in the FV model with the snow thermal conductivity at that level. A positive \(G\) indicates a downward directed snow heat flux (i.e., heating the snow).

The monthly mean \(G\) values shown here compare well (i.e., within the range of interannual variability shown in Figure 8) with others modelled or observed at the South Pole (Dalrymple and others, 1966; Carroll, 1982; King and Connolley, 1997), and are similar in magnitude and timing to other sites around the continent, despite large differences in latitude, longitude, alti-
tude, and continentality (King and Connolley, 1997; Bintanja, 2000; Reijmer and Oerlemans, 2002; van den Broeke and others, 2005, 2006).

The seasonal cycle of G has an unusual shape, it is not sinusoidal or symmetric in amplitude.

The rate of energy exchange between snow and atmosphere is greatest during the months when the temperature difference between snow and atmosphere is greatest. The heat content of the snow is greatest during January, but the largest downward temperature gradient (upward flux of energy) occurs in March as the Sun sets. In the multi-year mean, cooling continues throughout the winter. Heating of the snow during November and December is more dramatic, and shorter lived because the Sun must rise to elevations large enough to significantly heat the snow and overlying atmosphere. Quantitatively, there is 3 W m$^{-2}$ more heat input into the snow during November (up to 4 W m$^{-2}$) than is released from the snow to the atmosphere during March (minimum loss of 3 W m$^{-2}$). G integrates to 0.07 W m$^{-2}$, which is zero within the standard error of the 9-year mean. The snowpack is therefore not changing temperature in the annual mean over this time period.

The monthly mean winter G is negative (upward), and progresses steadily to zero from April through September in the 9-year mean (thick line in Figure 8). However, it is clear that this steady increase is a result of multi-year averaging. The G values are consistently directed upward from February through April. After April, the near-surface snow has lost most of the memory of the previous summer, so the influence of heat advected in from the coast can dominate the monthly mean G. In general, energy is still being drawn from the snow surface
by turbulent fluxes and radiation loss to space throughout the winter. So, any given month between May and September will likely have a negative G, but the magnitude of G depends more on the energy advected to the Antarctic Plateau from the coast than on the remaining summer heat content of the snow.

In the monthly mean, turbulent and radiative energy transfer are larger components of the surface energy balance than the interface heat flux shown here, often an order of magnitude larger (Town, 2007). The seasonal heat stored in the snow from the summer and released to the atmosphere during autumn is limited by the diffusivity of the snow. There is a significant amount of energy storage and energy reflux on shorter time scales, which consistently averages out on monthly time scales. The effect of variable G on the snow is shown as snow heating rates in Figure 9 (Table 4). Panel (a) shows the seasonal cycle of G. Panel (b) shows the mean seasonal cycle of heating rates (K day$^{-1}$) at 2-week intervals for 1995-2003. Panel (c) shows the mean two-week standard deviation in subsurface heating rates. Panel (d) shows the interannual variability of the two-week mean heating rates shown in Panel (b).

Prior work on short-term variability of G in snow in Antarctica was primarily limited to summertime investigations of diurnal variations in the surface energy balance. In Dronning Maud Land, the diurnal cycle can range from ±10 W m$^{-2}$ to ±20 W m$^{-2}$, proceeding inland from the coast (Bintanja, 2000; Reijmer and Oerlemans, 2002; van den Broeke and others, 2006). The diurnal range is largest under clear skies. It is attenuated under overcast skies due to the cloud’s absorption of downwelling shortwave and radiation emission of longwave
radiation (van den Broeke and others, 2006). Variability in mean daily G during summer is on the order of ± 8 W m$^{-2}$ on the high plateau in Dronning Maud Land (van As and others, 2005).

The effect of synoptic variability can clearly be large, sometimes as large as the diurnal solar variation at those sites. Of course, the South Pole has no 24-hour cycle of solar elevation, so all the sub-daily variability in G comes from variations in synoptic conditions such as cloud cover, wind speed, and temperature. Mean variability (1σ) in 9-minute G values ranges from a minimum in December of ± 5 W m$^{-2}$ to a mean winter (Apr-Sep) variability of ± 10 W m$^{-2}$. Histograms of 9-minute G values for January, March, July, and November of 1996 are shown in Figure 10. Figure 11 shows histograms of the resulting heating rates in the topmost 10 cm of snow.

These histograms in Figures 10 and 11 are asymmetric. The distribution is always skewed to larger interface heating rates, regardless of season, a phenomenon also noticed in the distribution of winter surface temperatures at Plateau Station (Kuhn and others, 1975). This is largely a result of synoptic activity, which at the “pole of cold” can only heat the snow surface. The limit on the rate of downward heat flux is related to how fast heat can be advected in from the coast. The upward (negative) heat fluxes are limited by the thermal conductivity of the snow and the rate of radiative cooling at the surface. The radiative cooling rate drops quickly with decreasing temperature; it is proportional to the fourth power of temperature. Winter months
show a wider spread than summer months due to the surface-based atmospheric temperature inversion.

Sub-daily heating rates can vary by as much as 40 K day$^{-1}$ (1σ) at the snow surface (Figs. 9c and 11). The sub-monthly variability in heating rates extends deeper in winter than in summer because the atmospheric forcings are larger and more variable during winter. The interannual variability of heating rates is largest close to the surface, and also larger during winter than summer (Figure 9d). Below a depth of approximately 60 cm, the interannual variations have diffused into a mean, climatological heating rate.

The heating rates in Figure 11 are more symmetric about their means than the corresponding G values. The corresponding standard deviations of heating rates are shown in row 1 of Table 5. The shape of the distribution changes with season as the atmospheric and radiative influences at the surface change. The narrow distributions for January and November in Figure 11 result from weaker synoptic activity and solar forcing of snow surface temperatures during spring and summer. In terms of the variability of temperatures and heating-rates, 1996 is representative of the nine years modelled here. Despite variability within each month, the energy flux at the snow-air interface consistently averages out to very similar monthly mean values each year. This is unexpected because it requires the net synoptic influence on the surface to be approximately the same from year to year in a given month.

In Figure 12, we examine the same months from 1996 that were shown in Figure 7. Heating rates can be as large as 10 K day$^{-1}$ or greater in the bulk of the near-surface snow, but such
heating rates are often followed immediately by significant cooling. The narrow panel above each contour plot shows \(G \). Whereas the monthly mean \(G \) never exceeded ±6 W m\(^{-2}\) in the nine years simulated here, the 9-minute values of interface heat flux can be as large as ±20 W m\(^{-2}\). The amount of energy refluxed each month between the snow and the atmosphere is greater during the winter than during the summer. Even though \(G \) on short time scales is large, the peaks are smaller than the largest mean daily excursions observed by Carroll (1982). However, our results generally confirm the behavior of the energy fluxes estimated by Carroll (1982).

Interannual variability of heating rates (Figure 9d) are on the same order as the climatological heating rates in the topmost few cm during March and November. The heating rates are much more variable interannually, and at greater depth, during winter without the dominating influence of the Sun.

Subsurface vapour pressures

Understanding the seasonal cycle and variability of subsurface vapour pressures is important for a number of applications: snow metamorphism, snow microstructure, and analysis of paleoclimate records. In this section we present vapour pressures in the near-surface snow at the South Pole calculated from the subsurface temperatures by assuming saturation with respect to ice in the snow pore spaces (Goff and Gratch formula from List, 1949).

From top to bottom, Figure 13 shows: the seasonal cycle of skin-surface temperature; the seasonal cycle of subsurface vapour pressures; the standard deviation of the 9-minute vapour
pressures; and the interannual standard deviation of the annual cycles. The maximum climato-
tological vapour pressure is 60-70 Pa and occurs at the surface during December and January.
The amplitude of the seasonal cycle of vapour pressure drops off much more steeply than the
subsurface temperatures in Figure 5 due to the Clausius-Clapeyron relationship.

Figure 13c shows that synoptically driven changes in vapour pressures, and vapour-pressure
gradients, occur primarily in the top 10 cm of the snow. The relatively higher temperatures
of summer, and the changing vapour-pressure gradients during summer, can cause significant
snow metamorphism, consistent with the idea that most snow metamorphism occurs during
summer.

Water vapour can be transported primarily by three mechanisms in cold snow: diffusion
across temperature and snow-grain-radius gradients, forced ventilation by surface winds (Col-
beck, 1989; Neumann and others, 2007), and convection within the snow. Brandt and Warren
(1997) found that wind-pumping, the forced ventilation, is not significant at the South Pole
below the top 20 cm of the snow. It may turn out to be significant at shallower depths. Even
if significant ventilation is found at the South Pole, the snow may still be saturated with wa-
ter vapour. However, forced ventilation does have implications for paleoclimate records in
that the isotopic composition of water vapour in the pore spaces in the top 10 cm is likely a
mixture of the atmospheric $\delta^{18}O$ and the $\delta^{18}O$ of the surrounding snow. Thus, the isotopic
signature of the snow may change after deposition due to ventilation and subsequent vapour
transport within the snow (Neumann and others, 2005; Town, 2007), which is likely greater
than changes in isotopic content due only to pore-space diffusion down isotopic gradients (e.g., Johnsen and others, 2000; Helsen and others, 2005, 2006).

Figure 13d shows significant interannual variability in subsurface vapour pressure due to interannual variability in synoptic forcing of snow temperatures. Figure 14 shows that synoptic variability affects vapour pressure in snow pore spaces. Vapor pressures on short time scales are extremely sensitive to synoptic activity at the surface during summer due to the relatively high temperatures. January 1996 experienced a change in vapour pressure at the surface of more than 30 Pa during the month due primarily to variability in synoptic activity.

The drop in temperature from January to March is evident in the low mean vapour pressures for March. Despite the large temperature swings during late autumn, winter, and early spring, there is not much vapour activity in the snow in March or July because of the low temperatures. The latter half of November begins to show some significant vapour pressure activity (vapour pressures greater than 1% of the surface pressure, which is approximately 600-700 mb) again as the skin-surface temperatures rise with increasing solar elevation.

Tables 6 and 7 list the monthly mean and monthly standard deviation in pore-space vapour pressures over the period 1995 to 2003. The snow shows relatively high vapour pressures down to approximately 150 cm from December through February. Again, the variability in the monthly means is confined to the upper 10 or 20 cm of the snow during summer and adjacent months. Vapor pressures during the rest of the year in the snow are suppressed by the low temperatures.
DISCUSSION AND CONCLUSIONS

Using a 1-D finite-volume model of the snow at the South Pole we have simulated nine years of near-surface snow temperatures based on skin-surface temperatures derived from routine measurements of upwelling longwave radiation. Whereas previous reports of similar data are often limited in temporal length or averaged for a month or more, we report results on multi-year means of short and long time-scale variability to understand the impact of surface temperatures on near-surface snow temperatures, heating rates, and vapour pressures.

The behavior of our model is consistent with the known behavior of snow temperatures. The temperatures have a mean seasonal cycle that decreases in amplitude with depth. The phase of the seasonal cycle lags the surface temperature forcing deeper in the snow due to the thermal inertia and diffusivity of the snow. The signature of synoptic forcing on snow temperatures and heating rates is lost below 60 cm during summer and below 100 cm during winter. There is much more variability in snow temperatures and energy reflux to the atmosphere during winter than during summer. This is due to increased synoptic activity during winter and the presence of surface-based atmospheric temperature inversions during winter.

Calculated monthly mean energy flux across the snow-air interface matches other measurements and simulations for the South Pole. However, we find net interface heat fluxes (G) exceeding 20 W m$^{-2}$ on hourly time scales. This has significant implications for understanding the skin-surface and near-surface atmospheric temperatures on short time scales. Although G averages out to small values in the monthly mean, the snow can act as a substantial short-
term reservoir of energy. This has been observed at other sites in Antarctica, but is quantified systematically here over longer time periods for application to other polar studies.

Accurate simulation of short-term energy storage and reflux in the snow may aid mesoscale climate and operational forecasts of near-surface atmospheric conditions in polar regions. The surface energy balance remains a challenge to polar models (King and Connolley, 1997; Hines and others, 1999, 2004; Bailey and Lynch, 2000), which is may be due to weaknesses in each component of the energy balance, and their feedbacks on each other. Attention should be paid to accurate parameterisations of the local, regional, and seasonal snow properties as these fundamentally control heat transfer in snow. Appropriate vertical resolution relative to the temporal resolution of the simulation also requires attention.

It has been suggested (Carroll, 1982) that such a short-term reservoir of energy might be an explanation for the coreless winter. While we believe that the energy reflux from the snow to the atmosphere does play a role in dampening near-surface atmospheric temperature variations, this behavior does not explain the persistent, if episodic, flux of atmospheric energy from the coast to the interior (on the order of 100 W m\(^{-2}\) in the annual mean Trenberth and Solomon, 1994), which is the real energy source maintaining the coreless winter.

Pore-space vapour pressures in the top 10 cm range from 60 Pa in summer to 2 Pa in winter. The seasonal cycle is damped with depth. Thus, post-depositional processes such as stable isotope modification happen predominantly during the short summer and in the top 40-60 cm of the snow (Town, 2007). At the South Pole, the snow accumulation rate is 20-
25 cm year\(^{-1}\) (corresponding to 8 cm of liquid-water-equivalent). This means that the snow may still experience significant temperature gradients and vapour-pressure gradients due to synoptic influences and solar heating for two or three years after deposition.

The pore-space vapour pressures determined here may have further atmospheric and glaciological implications for paleoclimatology. Most of the accumulation at the South Pole occurs during winter, and the summer is often a time of slight net ablation (Mosley-Thompson and others, 1999). Results from ECMWF simulations of precipitation over the Antarctic Plateau also indicate that there is probably more precipitation during winter than during summer (Bromwich and Parish, 1998). Therefore, the isotopic signature of the snow will be a complicated mixture of signals from ice crystals formed in clear-sky temperature inversions and snow grains fallen from clouds advected in from the coast, both being modified by post-depositional processing during the following summers. The contribution of diamond dust to total accumulation on the East Antarctic Plateau may be as high as 50-80\% in places (Kuhn and others, 1975; Ekaykin and others, 2004; Fujita and Abe, 2006). However, based on observations of ice crystal type at the South Pole (Walden and others, 2003), the South Pole probably receives approximately 25\% of its accumulation from clear-sky precipitation, and the rest from snow grains.

Further investigation into these processes would benefit from high-resolution observations of the near-surface snow, and explicit inclusion of wind pumping and solar heating of snow in our model.
ACKNOWLEDGMENTS

The authors thank Howard Conway, Jessica Drees, Michelle Koutnik, Al Rasmussen, and the rest of the UW Glaciology Group for excellent comments and suggestions. We thank the Baseline Surface Radiation Network and NOAA-GMD for providing data. We also acknowledge our funding from the U.S. National Science Foundation: OPP-0540090 and OPP-0636997.
References

Jackson, B. S., 1982. Surface energy budget at the South Pole during the austral summer, (Master’s thesis, University of California, Davis, California.

Simmonds, I., K. Keay and E. Lim, 2003. Synoptic activity in the seas around Antarctica,
Town and others: Near-Surface Snow Temperatures, South Pole

List of Figures

1 The box represents the one-dimensional finite-volume model used to calculate snow temperatures, heating rates, and vapour pressures. The thick arrows indicate vertical advection. The black dots are the points for which implicit solutions are determined at each time step. The hatched area is one control volume. The Sun represents a physical example of a source term for equation (1), the solar heating rate in J m$^{-3}$ s$^{-1}$. The nodes at which we solve for temperature are represented by the solid horizontal lines. The upper boundary condition (UBC) is skin-surface temperature measured at 9-minute intervals and the lower boundary condition (LBC, at 6.5 m depth) is a measured seasonally varying temperature gradient.

2 Near-surface snow properties of the South Pole during the International Geophysical Year (IGY) (Dalrymple and others, 1966) used in the finite-volume model of subsurface temperatures. (a) Model initialization temperature profile (31 December 1957, °C). (b). Mean annual snow density profile (kg m$^{-3}$). (c). Mean annual thermal conductivity profile (W m$^{-1}$ K$^{-1}$). (d). Mean annual thermal diffusivity ($\kappa = \frac{k}{\rho C_p}$, m2 s$^{-1}$).
Accuracy of the numerical solution with respect to the analytic solution as a function of depth and time resolution (K). The error is shown for Day 2 of the simulation, shown in the inset. The conditions for this scenario were a UBC of -30°C, and an initial isothermal temperature profile of -40°C.

Monthly mean 2-m atmospheric temperature for the South Pole for 1994-2003 (°C). The dashed lines show the standard deviation of daily average temperatures about the monthly mean.

Mean seasonal temperatures, short-term variability, and interannual variability for 1995-2003. (a) Climatological skin-surface temperature from long-wave upwelling radiation measurements, the upper boundary condition for the nine years of simulation (°C). (b) 9-year averages of mean two-week subsurface temperatures (°C). (c) 9-year averages of mean two-week standard deviation of 9-minute temperatures (K). (d) 9-year standard deviation (K) of means in (b).

Thick curves show snow-temperature profiles (°C) from the finite-volume model, averaged over the month for January, March, July, and November of 1996. The 5%, 25%, 75%, and 95% distribution values also indicated as thin solid and dashed lines (5% to the far left, 95% to the far right).
Snow temperatures for the months of January, March, July, and November of 1996 (°C). The time series in the panel above each contour plot is the skin-surface temperature used as forcing for that month.

Monthly mean G values for 1995-2003 are shown by the thin black lines ($W m^{-2}$). The 9-year mean of monthly mean G is shown by the thick black line. The case-study months used in this paper are shaded. Positive G is directed downward into the snow. The month of January is repeated.

Snow heating-rate climatology for 1995-2003. (a) G as shown in Figure 8 ($W m^{-2}$). (b): Two-week mean heating rates (K day$^{-1}$). (c): Two-week standard deviation of heating rates (K day$^{-1}$). (d): 1σ interannual variability about the mean shown in (b) (K day$^{-1}$). Note the different scales on vertical axes of (b), (c), and (d).

Histograms of G for four months of 1996 ($W m^{-2}$). The data have 9-minute time resolution. These distributions are representative of 1995-2003. The means and standard deviations are $2.1\pm5.6 \ W m^{-2}$, $-3.9\pm8.1 \ W m^{-2}$, $0.3\pm10.7 \ W m^{-2}$, and $4.0\pm6.1 \ W m^{-2}$ for January, March, July, and November, respectively.

Histograms of 9-minute heating rates averaged over the top 10 cm of snow for four months of 1996 (K day$^{-1}$). The data have 9-minute time resolution. These distributions are representative of 1995-2003.
12 Snow heating rates for months of 1996 (K day$^{-1}$). The time series in the panel above each contour plot is G for that month (W m$^{-2}$).

13 Climatology of pore-space vapour pressure for 1995-2003. (a) Climatological skin-surface temperature from longwave upwelling measurements ($^\circ$C). (b): 9-year average of two-week mean vapour pressures (Pa) in the top 2 m. (c): 9-year average of two-week standard deviation of vapour pressures (Pa) in the top 30 cm. (d): 1σ interannual variability (Pa) in the top 30 cm about the mean shown in (b).

14 Pore-space vapour pressures for the months January, March, July, and November during 1996. The time series in the panel above each contour plot is the time series of skin-surface temperature for that month.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard errors in 9-minute snow temperatures, heating rates, and G, determined through propagation of errors. Results are given for two different periods because the longwave upwelling data were available with 3-minute frequency from 1994-1997, and 1-minute frequency from 1998-2003. Uncertainties in the UBC and snow properties used in these calculations are: $LUF = \pm 4$ W m$^{-2}$, E. Dutton, pers. comm. (2004); $k = \pm 0.1$ W m$^{-1}$ K$^{-1}$, Brandt and Warren (1993); $C_p = \pm 6$ J kg$^{-1}$, Dalrymple and others (1966); $\rho = \pm 35$ kg m$^{-3}$, H. Conway, pers. comm. (2007).</td>
</tr>
<tr>
<td>2</td>
<td>Modelled mean monthly temperatures (°C) at each depth (1995-2003). See also Figure 5b.</td>
</tr>
<tr>
<td>3</td>
<td>Mean monthly standard deviation (K) of 9-minute model temperatures at each depth (1995-2003). See also Figure 5c.</td>
</tr>
<tr>
<td>4</td>
<td>Mean monthly heating rates (K day$^{-1}$) of the South Pole snow (1995-2003). See also Figure 9b.</td>
</tr>
<tr>
<td>5</td>
<td>Mean monthly standard deviation in heating rate (K day$^{-1}$) of the South Pole snow (1995-2003). See also Figure 9c.</td>
</tr>
<tr>
<td>6</td>
<td>Mean monthly vapour pressures (Pa) in the South Pole snow (1995-2003). See also Figure 13b.</td>
</tr>
</tbody>
</table>
Mean monthly standard deviation of 9-minute vapour pressures (Pa) in the South Pole snow (1995-2003). See also Figure 13c.
Fig. 1. The box represents the one-dimensional finite-volume model used to calculate snow temperatures, heating rates, and vapour pressures. The thick arrows indicate vertical advection. The black dots are the points for which implicit solutions are determined at each time step. The hatched area is one control volume. The Sun represents a physical example of a source term for equation (1), the solar heating rate in J m$^{-3}$ s$^{-1}$. The nodes at which we solve for temperature are represented by the solid horizontal lines. The upper boundary condition (UBC) is skin-surface temperature measured at 9-minute intervals and the lower boundary condition (LBC, at 6.5 m depth) is a measured seasonally varying temperature gradient.
Fig. 2. Near-surface snow properties of the South Pole during the International Geophysical Year (IGY) (Dalrymple and others, 1966) used in the finite-volume model of subsurface temperatures. (a) Model initialization temperature profile (31 December 1957, °C). (b). Mean annual snow density profile (kg m$^{-3}$). (c). Mean annual thermal conductivity profile (W m$^{-1}$ K$^{-1}$). (d). Mean annual thermal diffusivity ($\kappa = \frac{k}{\rho c_p}$, m2 s$^{-1}$).
Fig. 3. Accuracy of the numerical solution with respect to the analytic solution as a function of depth and time resolution (K). The error is shown for Day 2 of the simulation, shown in the inset. The conditions for this scenario were a UBC of -30°C, and an initial isothermal temperature profile of -40°C.
Fig. 4. Monthly mean 2-m atmospheric temperature for the South Pole for 1994-2003 (°C). The dashed lines show the standard deviation of daily average temperatures about the monthly mean.
Fig. 5. Mean seasonal temperatures, short-term variability, and interannual variability for 1995-2003. (a) Climatological skin-surface temperature from longwave upwelling radiation measurements, the upper boundary condition for the nine years of simulation (°C). (b) 9-year averages of mean two-week subsurface temperatures (°C). (c) 9-year averages of mean two-week standard deviation of 9-minute temperatures (K). (d) 9-year standard deviation (K) of means in (b).
Fig. 6. Thick curves show snow-temperature profiles (°C) from the finite-volume model, averaged over the month for January, March, July, and November of 1996. The 5%, 25%, 75%, and 95% distribution values also indicated as thin solid and dashed lines (5% to the far left, 95% to the far right).
Fig. 7. Snow temperatures for the months of January, March, July, and November of 1996 (°C). The time series in the panel above each contour plot is the skin-surface temperature used as forcing for that month.
Fig. 8. Monthly mean G values for 1995-2003 are shown by the thin black lines (W m$^{-2}$). The 9-year mean of monthly mean G is shown by the thick black line. The case-study months used in this paper are shaded. Positive G is directed downward into the snow. The month of January is repeated.
Fig. 9. Snow heating-rate climatology for 1995-2003. (a) G as shown in Figure 8 (W m$^{-2}$). (b): Two-week mean heating rates (K day$^{-1}$). (c): Two-week standard deviation of heating rates (K day$^{-1}$). (d): 1σ interannual variability about the mean shown in (b) (K day$^{-1}$). Note the different scales on vertical axes of (b), (c), and (d).
Fig. 10. Histograms of G for four months of 1996 (W m$^{-2}$). The data have 9-minute time resolution. These distributions are representative of 1995-2003. The means and standard deviations are 2.1 ± 5.6 W m$^{-2}$, -3.9 ± 8.1 W m$^{-2}$, 0.3 ± 10.7 W m$^{-2}$, and 4.0 ± 6.1 W m$^{-2}$ for January, March, July, and November, respectively.
Fig. 11. Histograms of 9-minute heating rates averaged over the top 10 cm of snow for four months of 1996 (K day$^{-1}$). The data have 9-minute time resolution. These distributions are representative of 1995-2003.
Fig. 12. Snow heating rates for months of 1996 (K day⁻¹). The time series in the panel above each contour plot is G for that month (W m⁻²).
Fig. 13. Climatology of pore-space vapour pressure for 1995-2003. (a) Climatological skin-surface temperature from longwave upwelling measurements (°C). (b): 9-year average of two-week mean vapour pressures (Pa) in the top 2 m. (c): 9-year average of two-week standard deviation of vapour pressures (Pa) in the top 30 cm. (d): 1σ interannual variability (Pa) in the top 30 cm about the mean shown in (b).
Fig. 14. Pore-space vapour pressures for the months January, March, July, and November during 1996. The time series in the panel above each contour plot is the time series of skin-surface temperature for that month.
Table 1. Standard errors in 9-minute snow temperatures, heating rates, and G, determined through propagation of errors. Results are given for two different periods because the long-wave upwelling data were available with 3-minute frequency from 1994-1997, and 1-minute frequency from 1998-2003. Uncertainties in the UBC and snow properties used in these calculations are: $\text{LUF} = \pm 4 \text{ W m}^{-2}$, E. Dutton, pers. comm. (2004); $k = \pm 0.1 \text{ W m}^{-1} \text{ K}^{-1}$, Brandt and Warren (1993); $C_p = \pm 6 \text{ J kg}^{-1}$, Dalrymple and others (1966); $\rho = \pm 35 \text{ kg m}^{-3}$, H. Conway, pers. comm. (2007).

<table>
<thead>
<tr>
<th>period</th>
<th>T</th>
<th>$\frac{dT}{dt}$</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-1997</td>
<td>± 0.8</td>
<td>± 6.4</td>
<td>± 3.8</td>
</tr>
<tr>
<td>1998-2003</td>
<td>± 0.4</td>
<td>± 3.6</td>
<td>± 2.6</td>
</tr>
</tbody>
</table>
Table 2. Modelled mean monthly temperatures (°C) at each depth (1995-2003). See also Figure 5b.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>-28.2</td>
<td>-39.7</td>
<td>-53.3</td>
<td>-57.6</td>
<td>-58.5</td>
<td>-58.8</td>
<td>-59.6</td>
<td>-58.8</td>
<td>-60.6</td>
<td>-52.7</td>
<td>-37.4</td>
<td>-28.1</td>
</tr>
<tr>
<td>10-20</td>
<td>-29.3</td>
<td>-39.2</td>
<td>-51.9</td>
<td>-56.4</td>
<td>-57.9</td>
<td>-58.0</td>
<td>-59.1</td>
<td>-58.3</td>
<td>-60.2</td>
<td>-53.5</td>
<td>-39.6</td>
<td>-30.3</td>
</tr>
<tr>
<td>20-40</td>
<td>-30.9</td>
<td>-38.8</td>
<td>-50.3</td>
<td>-55.2</td>
<td>-57.2</td>
<td>-57.1</td>
<td>-58.4</td>
<td>-57.8</td>
<td>-59.7</td>
<td>-54.3</td>
<td>-41.9</td>
<td>-32.9</td>
</tr>
<tr>
<td>40-60</td>
<td>-33.3</td>
<td>-38.6</td>
<td>-48.2</td>
<td>-53.4</td>
<td>-56.0</td>
<td>-56.0</td>
<td>-55.3</td>
<td>-57.1</td>
<td>-58.7</td>
<td>-55.1</td>
<td>-45.1</td>
<td>-36.6</td>
</tr>
<tr>
<td>60-80</td>
<td>-35.5</td>
<td>-38.9</td>
<td>-46.8</td>
<td>-52.0</td>
<td>-54.9</td>
<td>-55.1</td>
<td>-56.5</td>
<td>-56.5</td>
<td>-57.9</td>
<td>-55.5</td>
<td>-47.3</td>
<td>-39.5</td>
</tr>
<tr>
<td>80-100</td>
<td>-37.5</td>
<td>-39.4</td>
<td>-45.9</td>
<td>-50.9</td>
<td>-53.9</td>
<td>-54.4</td>
<td>-55.7</td>
<td>-55.9</td>
<td>-57.1</td>
<td>-55.6</td>
<td>-49.0</td>
<td>-41.9</td>
</tr>
<tr>
<td>100-150</td>
<td>-40.2</td>
<td>-40.5</td>
<td>-45.1</td>
<td>-49.7</td>
<td>-52.6</td>
<td>-53.5</td>
<td>-54.6</td>
<td>-52.2</td>
<td>-56.1</td>
<td>-55.4</td>
<td>-50.8</td>
<td>-44.7</td>
</tr>
<tr>
<td>150-200</td>
<td>-43.8</td>
<td>-42.6</td>
<td>-44.9</td>
<td>-48.4</td>
<td>-51.0</td>
<td>-52.3</td>
<td>-53.3</td>
<td>-54.0</td>
<td>-54.8</td>
<td>-54.9</td>
<td>-52.4</td>
<td>-47.9</td>
</tr>
<tr>
<td>200-250</td>
<td>-46.7</td>
<td>-44.9</td>
<td>-45.5</td>
<td>-47.7</td>
<td>-49.9</td>
<td>-51.3</td>
<td>-52.3</td>
<td>-53.1</td>
<td>-53.7</td>
<td>-54.1</td>
<td>-53.0</td>
<td>-50.1</td>
</tr>
<tr>
<td>250-300</td>
<td>-48.4</td>
<td>-46.5</td>
<td>-46.4</td>
<td>-47.7</td>
<td>-49.4</td>
<td>-50.7</td>
<td>-51.6</td>
<td>-52.4</td>
<td>-52.9</td>
<td>-53.4</td>
<td>-53.0</td>
<td>-51.1</td>
</tr>
<tr>
<td>300-350</td>
<td>-49.5</td>
<td>-47.9</td>
<td>-47.3</td>
<td>-48.0</td>
<td>-49.2</td>
<td>-50.4</td>
<td>-51.2</td>
<td>-51.9</td>
<td>-52.4</td>
<td>-52.9</td>
<td>-52.8</td>
<td>-52.6</td>
</tr>
<tr>
<td>350-400</td>
<td>-50.2</td>
<td>-48.9</td>
<td>-48.2</td>
<td>-48.4</td>
<td>-49.3</td>
<td>-50.2</td>
<td>-50.9</td>
<td>-51.4</td>
<td>-52.0</td>
<td>-52.4</td>
<td>-52.5</td>
<td>-51.8</td>
</tr>
</tbody>
</table>
Table 3. Mean monthly standard deviation (K) of 9-minute model temperatures at each depth (1995-2003). See also Figure 5c.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>3.3</td>
<td>5.6</td>
<td>6.0</td>
<td>6.1</td>
<td>5.8</td>
<td>6.1</td>
<td>6.4</td>
<td>6.3</td>
<td>6.3</td>
<td>6.4</td>
<td>4.5</td>
<td>2.8</td>
</tr>
<tr>
<td>10-20</td>
<td>2.4</td>
<td>4.5</td>
<td>4.6</td>
<td>4.4</td>
<td>4.6</td>
<td>4.3</td>
<td>4.4</td>
<td>4.3</td>
<td>4.2</td>
<td>4.7</td>
<td>3.8</td>
<td>2.4</td>
</tr>
<tr>
<td>20-40</td>
<td>1.7</td>
<td>3.6</td>
<td>3.7</td>
<td>3.2</td>
<td>3.0</td>
<td>3.1</td>
<td>2.9</td>
<td>3.0</td>
<td>2.8</td>
<td>3.4</td>
<td>3.3</td>
<td>2.3</td>
</tr>
<tr>
<td>40-60</td>
<td>1.0</td>
<td>2.6</td>
<td>3.0</td>
<td>2.2</td>
<td>1.6</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.5</td>
<td>2.2</td>
<td>2.9</td>
<td>2.2</td>
</tr>
<tr>
<td>60-80</td>
<td>0.7</td>
<td>2.0</td>
<td>2.6</td>
<td>1.6</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.6</td>
<td>2.6</td>
<td>2.1</td>
</tr>
<tr>
<td>80-100</td>
<td>0.7</td>
<td>1.5</td>
<td>2.3</td>
<td>1.3</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>1.1</td>
<td>2.3</td>
<td>1.9</td>
</tr>
<tr>
<td>100-150</td>
<td>0.8</td>
<td>0.9</td>
<td>1.8</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>150-200</td>
<td>0.9</td>
<td>0.3</td>
<td>1.1</td>
<td>0.8</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>200-250</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>250-300</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>300-350</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>350-400</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Table 4. Mean monthly heating rates (K day\(^{-1}\)) of the South Pole snow (1995-2003). See also Figure 9b.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>-0.17</td>
<td>-0.46</td>
<td>-0.27</td>
<td>-0.15</td>
<td>0.07</td>
<td>-0.20</td>
<td>0.14</td>
<td>-0.21</td>
<td>0.27</td>
<td>0.37</td>
<td>0.44</td>
<td>0.14</td>
</tr>
<tr>
<td>10-20</td>
<td>-0.14</td>
<td>-0.40</td>
<td>-0.27</td>
<td>-0.15</td>
<td>0.09</td>
<td>-0.21</td>
<td>0.12</td>
<td>-0.17</td>
<td>0.17</td>
<td>0.36</td>
<td>0.38</td>
<td>0.19</td>
</tr>
<tr>
<td>20-40</td>
<td>-0.10</td>
<td>-0.34</td>
<td>-0.27</td>
<td>-0.14</td>
<td>0.07</td>
<td>-0.16</td>
<td>0.05</td>
<td>-0.10</td>
<td>0.08</td>
<td>0.32</td>
<td>0.35</td>
<td>0.22</td>
</tr>
<tr>
<td>40-60</td>
<td>-0.04</td>
<td>-0.28</td>
<td>-0.29</td>
<td>-0.13</td>
<td>0.02</td>
<td>-0.10</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.25</td>
<td>0.34</td>
<td>0.24</td>
</tr>
<tr>
<td>60-80</td>
<td>0.01</td>
<td>-0.20</td>
<td>-0.25</td>
<td>-0.12</td>
<td>-0.02</td>
<td>-0.06</td>
<td>-0.04</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.16</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>80-100</td>
<td>0.05</td>
<td>-0.16</td>
<td>-0.23</td>
<td>-0.11</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.12</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>100-150</td>
<td>0.08</td>
<td>-0.11</td>
<td>-0.20</td>
<td>-0.12</td>
<td>-0.06</td>
<td>-0.03</td>
<td>-0.04</td>
<td>-0.01</td>
<td>-0.03</td>
<td>0.08</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>150-200</td>
<td>0.08</td>
<td>-0.03</td>
<td>-0.11</td>
<td>-0.09</td>
<td>-0.06</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.03</td>
<td>0.03</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>200-250</td>
<td>0.10</td>
<td>0.02</td>
<td>-0.07</td>
<td>-0.09</td>
<td>-0.07</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.03</td>
<td>0.01</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>250-300</td>
<td>0.08</td>
<td>0.04</td>
<td>-0.03</td>
<td>-0.06</td>
<td>-0.05</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>300-350</td>
<td>0.06</td>
<td>0.04</td>
<td>-0.00</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>350-400</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Table 5. Mean monthly standard deviation in heating rate (K day$^{-1}$) of the South Pole snow (1995-2003). See also Figure 9c.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>10.8</td>
<td>12.5</td>
<td>13.8</td>
<td>13.2</td>
<td>14.6</td>
<td>14.3</td>
<td>14.1</td>
<td>13.2</td>
<td>13.9</td>
<td>11.5</td>
<td>9.2</td>
<td>8.3</td>
</tr>
<tr>
<td>10-20</td>
<td>1.8</td>
<td>2.5</td>
<td>3.4</td>
<td>3.5</td>
<td>4.0</td>
<td>3.8</td>
<td>4.0</td>
<td>3.7</td>
<td>3.9</td>
<td>3.1</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>20-40</td>
<td>0.7</td>
<td>1.0</td>
<td>1.6</td>
<td>1.6</td>
<td>1.9</td>
<td>1.7</td>
<td>1.9</td>
<td>1.7</td>
<td>1.8</td>
<td>1.5</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>40-60</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>60-80</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>80-100</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>100-150</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>150-200</td>
<td>0.0</td>
</tr>
<tr>
<td>200-250</td>
<td>0.0</td>
</tr>
<tr>
<td>250-300</td>
<td>0.0</td>
</tr>
<tr>
<td>300-350</td>
<td>0.0</td>
</tr>
<tr>
<td>350-400</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 6. Mean monthly vapour pressures (Pa) in the South Pole snow (1995-2003). See also Figure 13b.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>49</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>19</td>
<td>49</td>
</tr>
<tr>
<td>10-20</td>
<td>43</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>20-40</td>
<td>36</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>40-60</td>
<td>28</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>60-80</td>
<td>22</td>
<td>15</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>80-100</td>
<td>17</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>100-150</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>150-200</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>200-250</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>250-300</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>300-350</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>350-400</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 7. Mean monthly standard deviation of 9-minute vapour pressures (Pa) in the South Pole snow (1995-2003). See also Figure 13c.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>16</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>10-20</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>20-40</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>40-60</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>60-80</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>80-100</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>150-200</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>200-250</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>250-300</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>300-350</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>350-400</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>