Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions

Anne-Sophie Taillandier, Florent Domine, William R. Simpson, Matthew Sturm, and Thomas A. Douglas

Received 31 March 2006; revised 16 January 2007; accepted 15 March 2007; published 14 July 2007.

[1] The specific surface area (SSA) of snow is the surface area available to gases per unit mass. It is an important variable for quantifying air-snow exchange of chemical species, and it is closely related to other variables such as albedo. Snow SSA decreases during metamorphism, but few data are available to quantify its rate of decrease. We have performed laboratory experiments under isothermal and temperature gradient conditions during which the SSA of snow samples was monitored for several months. We have also monitored the SSA of snowfalls subjected to large temperature gradients at a field site in the central Alaskan taiga. The same snow layers were also monitored in a manipulated snowpack where the temperature gradient was greatly reduced. In all cases, the SSA decay follows a logarithmic equation with three adjustable variables that are parameterized using the initial snow SSA and the time-averaged temperature of the snow. Two parameterizations of the three adjustable variables are found: One applies to the isothermal experiments and to the quasi-isothermal cases studied in Alaska (equitemperature (ET) metamorphism), and the other is applicable to both the laboratory experiments performed under temperature gradients and to the natural snowpack in Alaska (temperature gradient (TG) metamorphism). Higher temperatures accelerate the decrease in SSA, and this decrease is faster under TG than ET conditions. We discuss the conditions of applicability of these parameterizations and use them to speculate on the effect of climate change on snow SSA. Depending on the climate regime, changes in the rate of decay of snow SSA and hence in snow albedo may produce either negative or positive feedbacks on climate change.

1. Introduction

[2] Snow crystals in dry snowpacks are subjected to water vapor gradients generated by temperature gradients in the snowpack and by curvature gradients on the surface of snow crystals. These effects drive sublimation/condensation cycles that modify the sizes and shapes of snow crystals and the physical properties of the snowpack. These changes are grouped under the term “snow metamorphism.” Two main regimes of dry metamorphism are described in the literature [Sommerfeld and LaChapelle, 1970]. Equitemperature (ET) metamorphism takes place under isothermal or low temperature gradient conditions (<10°C m−1) and is mostly driven by curvature gradients. Temperature gradient (TG) metamorphism takes place under temperature gradients greater than 20°C m−1 [Marbouty, 1980].

[3] Metamorphism also affects the chemical composition of snow and of the atmosphere above the snow [Domine and Shepson, 2002]. Gases soluble in ice and those that adsorb onto snow crystal surfaces are exchanged with the atmosphere through sublimation/condensation and adsorption/desorption cycles. Adsorbed gases can diffuse inside snow grains and can undergo surface (photo)chemical reactions. Most of these physical and chemical processes involve the surface of snow crystals and their quantification requires the knowledge of the snow surface area, which changes during metamorphism [Cabanes et al., 2002, 2003; Legagneux et al., 2004] and whose variations must be described in models of snow physics and chemistry [Flin et al., 2003; Legagneux and Domine, 2005].

[4] The variable used to describe the surface area available for chemical processes is the specific surface area (SSA), defined as the snow surface area accessible to gases per unit mass, often expressed in cm² g⁻¹. Legagneux et al. [2002] measured snow SSA values from less than 100 cm² g⁻¹ for aged snow to 1580 cm² g⁻¹ for freshly fallen snow. Lei and
Wania [2004] showed that the snow SSA value is crucial to model organic species scavenging by precipitating snow. Daly and Wania [2004] tested the effect of a snow cover on the fate of organic contaminants in the environment using a model that included snow scavenging and the adsorption of organic contaminants to a seasonal snowpack. Calculated wintertime atmospheric concentrations of organic contaminants were low in simulations on the basis of a high snow SSA, while higher concentrations were obtained with a lower SSA. That study demonstrates the importance of snow SSA in models of air-snow chemical interactions. Snow SSA almost always decreases monotonically with time [Cabanes et al., 2002, 2003; Legagneux et al., 2004] and the decay of snow SSA needs to be described in models of air-snow exchange of chemical species if we are to predict events such as spikes of pollutants in air, soil or water during snowmelt [Daly and Wania, 2004].

[5] Ice core analyses are used to reconstruct the evolution of atmospheric composition [Legrand and Mayewski, 1997]. In the case of adsorbed species [Villa et al., 2003], complex modeling taking into account the reduction of snow SSA with time and the diffusivity of the snow is needed for a precise inversion of ice core data. A quantitative parameterization of the rate of decrease of snow SSA would usefully contribute to such a model.

[6] A quantitative understanding of the rate of decay of snow SSA would also benefit snow physical models. For example, snow albedo depends on grain size [Warren, 1982], which can be related to SSA if assumptions on grain shapes are made. Domine et al. [2006] have shown the existence of a simple monotonic relationship between snow spectral albedo and SSA, confirming this assertion. Understanding the SSA decay rate of surface snow layers can thus help predict the evolution of the energy budget of a snowpack after a snowfall.

[7] Cabanes et al. [2003] first proposed an empirical exponential decay function of snow SSA depending on time and temperature based on the evolution of surface snow layers sampled in the Alps and in the Arctic. They mentioned that other analytical forms could describe snow SSA decay more accurately, but the exponential function was easier to use. Legagneux et al. [2003] subsequently performed laboratory experiments under isothermal conditions and observed that SSA decay plots were best fitted using a logarithmic law:

\[SSA(t) = B - A \ln(t + \Delta t) \]

where \(A, B \) and \(\Delta t \) are adjustable parameters. Remarkably, they observed that \(A \) and \(B \) were linearly correlated for a given temperature. Although equation (1) provides a simple parameterization of SSA, it is empirical and has its limits. For example SSA values are predicted to become negative after about a year. Legagneux et al. [2004] later confirmed equation (1) and interpreted their data within Ostwald ripening theory [Ostwald, 1901].

[8] Ostwald ripening describes the coarsening of solid particles with a given size distribution by exchange of matter through a fluid phase, the driving force being the minimization of surface energy. It was treated quantitatively by Lifshitz and Slyozov [1961] and Wagner [1961], producing what is known as the LSW theory. Legagneux et al. [2004] applied this theory to snow SSA decay during isothermal metamorphism, treating snow crystals as non-connected spheres. They showed that under the LSW theory, snow SSA should follow the rate law:

\[SSA(t) = SSA_0 \left(\frac{\tau}{\tau + \Delta t} \right)^n \]

where \(SSA_0 \) is the initial SSA at time \(t = 0 \), \(n \) is the growth exponent and \(\tau \) is a variable that encompasses the effects of the growth rate and of \(n \). These authors also showed that equation (1) is in fact an approximation of equation (2), and (1) is valid in the time range from less than 1 day to about 150 days. Using fairly complex equations, they established the relationships between \(A, B \) and \(\Delta t \) of equation (1) on the one hand and \(SSA_0, \tau \) and \(n \) of equation (2), therefore giving physical meaning to the parameters of equation (1) (see their equations (10) to (13)). They also demonstrated that, although equation (2) fitted SSA decay plots extremely well, the formalism of the LSW theory could not be used to predict SSA decay during isothermal metamorphism because a steady state was not reached in the crystal size distribution within the lifetime of a seasonal snowpack.

[9] In a further attempt to reach a theoretical understanding of snow SSA decay, Legagneux and Domine [2005] developed a quantitative model of isothermal snow metamorphism, where exchange of matter between ice spheres of different radii of curvature was caused by the difference in vapor pressure (Kelvin equation). They calculated analytically water vapor transport from the smaller to the larger ice spheres and found that diffusion of water vapor in air was the rate-limiting step. Their model reproduced very accurately the changes in the distribution of radii of curvature of natural snow undergoing isothermal metamorphism, measured by Flin et al. [2003] using high-resolution X-ray microtomography. Unfortunately, they were not able to reproduce SSA decay, and interpreted this lack of success by the fact that in real snow, the mass of ice associated with each curvature is different from the value for idealized spheres. Because SSA is the surface area to mass ratio, this caused the error in SSA. They concluded that a more realistic treatment of snow crystal shapes or the use of shape correction factors were necessary to understand SSA decay. Moreover, since natural dry snowpacks are not isothermal, efforts to obtain experimental data under non-isothermal conditions and to develop the corresponding models were recommended.

[10] Recently, Flanner and Zender [2006] developed a model (hereinafter referred to as FZ06) of snow SSA decay that treats vapor transport driven by differences in curvature (Kelvin’s law) and temperature (Clapeyron’s law). Again, the complexity of snow structure caused difficulties. They approximated snow crystals as spheres and used two adjustable parameters, \(\sigma_g \) for the distribution of crystal sizes and \(\phi \) for the irregularity in particle spacing. By adjusting \(\sigma_g \), they were able to reproduce the experimental isothermal SSA decay rates of Legagneux et al. [2004] with reasonable success, the fit of some decay plots being very good. By adjusting \(\phi \), they reproduced the data of Fukuzawa and Akitaya [1993], who measured the growth in mean diameter
of crystals growing under temperature gradients of 150 to 300°C m⁻¹. Here, for the diameters of the crystals, Flanner and Zender [2006] used the diameter of spheres with equal cross-sectional areas.

[11] Fukuzawa and Akitaya [1993] did not measure SSA directly, and it is not clear how reliably SSA can be derived from their data. Indeed, hollow faceted crystals called depth hoar grow under temperature gradients greater than 20°C m⁻¹. Such a crystal is shown in Figure 1. The snow sample from which this crystal was taken had a SSA of 131 cm² g⁻¹. The SSA of this depth hoar crystal can be estimated from its dimensions [Domine et al., 2001]. Briefly, the crystal is approximated by an infinite slab having the same thickness as the walls of the hollow crystal, 130 μm. We find a value of 167 cm² g⁻¹, in good agreement with the value of the whole sample. The radius of the ice sphere with the same SSA is \(r_e = 3/(ρ_i \cdot SSA) \), where \(ρ_i \) is the density of ice, and here \(r_e = 196 \) μm (note that SSA is an intensive variable, so that two crystals can have the same SSA while having different masses). In comparison, the radius of the sphere having the same cross-sectional area as this crystal is 1.20 mm, with a corresponding SSA of 27 cm² g⁻¹ (Figure 1). This example illustrates the potential added error in adjusting a SSA evolution model with indirect estimations of snow SSA.

[12] More detailed experimental data of snow SSA decay under TG conditions are needed. These conditions prevail in the natural snowpack where they are induced by daily and seasonal temperature variations. Such data are critically lacking for the atmospheric chemistry and climate applications mentioned above. FZ06 seems promising in view of its ability to fit the isothermal data of Legagneux et al. [2004] but it is not certain that the data of Fukuzawa and Akitaya [1993] can be used to test it.

[13] Here, we conduct experiments where snow is subjected to controlled temperature gradients for several months. The snow samples used were collected from the same snow falls and at the same time as those used by Legagneux et al. [2004] for isothermal experiments. This allowed us to compare the evolution of SSA under ET and TG conditions. During the winter of 2003/2004 we also monitored the SSA of natural snow layers throughout the winter in Central Alaska, where strong temperature gradients develop in the taiga snowpack [Sturm and Benson, 1997; Taillandier et al., 2006]. The taiga snowpack covers large boreal areas. It is sheltered from wind by vegetation and remains of low density, in contrast to the tundra snowpack that is capped by a high-density windpack [Sturm et al., 1995; Domine et al., 2002]. We also monitored the SSA of these snow layers in Alaska, but modified them so that they evolved under ET conditions.

[14] We then compare our data with predictions by FZ06 and find good agreement. However, FZ06 requires complex numerical modeling. A simpler parameterization may be easier to implement in snowpack models coupled to atmospheric or climate models. We thus propose simple empirical equations that reproduce both ET and TG data and can be readily introduced in models.

2. Methods

2.1. Isothermal Experiments

[15] Nine snowfalls were collected and subjected to isothermal metamorphism in a cold room. Snow characteristics and experimental conditions were detailed by Legagneux et al. [2003, 2004]. Briefly, freshly fallen snow was sampled either in the stainless steel container used to run SSA measurements or in airtight boxes that were kept in a cold room at the desired temperature (−4, −10 or −15°C). Snow SSA was then measured regularly.

2.2. Temperature Gradient Experiments

[16] Two of the snowfalls used for isothermal experiments were also used for temperature gradient experiments. They were sampled during events on 6 March and 2 April 2003 near Chamrousse, in the Belledonne range of the French Alps. The first precipitation event consisted of moderately to heavily rimed plates and dendritic crystals while the second one consisted of graupel. The snow temperature during both events was just below 0°C. Nine airtight boxes 30 cm high with a basal section 17 × 11 cm were thermally equilibrated with snow and then delicately filled with snow using a 10 cm wide shovel. The boxes were placed in a thermally insulated trunk filled with snow and transported to the laboratory within a half hour. Snow was also sampled into glass vials immediately immersed into liquid nitrogen to measure the SSA of the freshly fallen snow.

[17] The top and bottom faces of the sampling boxes were made of aluminum while the sides were made of wood. To generate a temperature gradient, the nine boxes tightly packed together were placed in a cold room at −15.0°C ± 0.1°C, with their base on an aluminum bottom plate heated to −5.0°C ± 0.2°C (Figure 2). The sides of the boxes were thermally shielded by thick insulating foam. Two fans in the heated space below the heated aluminum plate ensured thermal homogeneity. The inner height of the boxes was 30 cm so the temperature gradient was 33°C m⁻¹. In one of the boxes, sensors monitored the snow temperature at each sampling level.
The boxes opened from one side and snow sampling was performed by coring 130 cm3 of snow at 3 levels one box at a time (Figure 2) using a metal corer of 35 mm ID. The samples were gently inserted into the cylindrical SSA measurement containers, also 35 mm ID, and the container was immersed in liquid nitrogen. SSA evolution was followed during 102 and 77 days for the snowfalls of 6 March and 2 April 2003, respectively. Since each box was only sampled once, experimental decay plots included 10 data points at the most: those from the nine boxes, plus the measurement of the initial SSA (Figure 3).

2.3. Field Measurements

The seasonal Arctic snowpack was studied during winter 2003/2004 at the Large Animal Research Station (LARS), at the University of Alaska Fairbanks (64°52.9′N, 147°51.9′W). The natural snowpack investigation was coupled to that of a similar snowpack subjected to very low temperature gradients. This low thermal gradient condition was achieved by letting snow accumulate on large tables (1.5 × 3 m) placed 1.5 m above the ground prior to the onset of winter. Air circulation under the tables prevented the establishment of any significant temperature gradient. At this latitude, there is little day light and solar input to the snowpack is limited. Only in March did we observe transient temperature gradients near the snow surface. Probes recorded snow temperature every 7.5 cm inside the natural snowpack and at 3 different heights in the snowpack on one of the tables. Meteorological data (air temperature, wind speed and direction) were continuously monitored on site [Taillardier et al., 2006].

Snow that fell in four separate events was regularly sampled for SSA measurements during the winter (Table 1). Two of these snowfalls were also monitored in the snowpack subjected to low temperature gradient on the tables. The sampling procedure followed Hanot and Domine [1999] and Domine et al. [2002]. Briefly, snow pits with vertical faces were dug to observe the stratigraphy and to locate the layers of interest. For each sample, about 100 cm3 of snow was collected in a glass vial that was immediately immersed in liquid nitrogen to stop metamorphism until its

![Figure 2. Cross section of the experimental thermal gradient apparatus. Three of the nine snow-filled boxes are visible. Boxes are 30 cm in height.](image1)

![Figure 3. SSA decay of the snow layer sampled on 2 April 2003 in the Alps. Isothermal experiment 9 of Table 2 (red diamonds) is compared to temperature gradient experiment 12 (blue triangles). The fits are to equation (1) with coefficients of Table 2. The equivalent sphere radius r_e is shown on the right ordinate axis.](image2)
contents were transferred to the SSA measurement container in a cold room at \(-17^\circ\text{C}\). The duration of SSA monitoring under high temperature gradient conditions varied between 29 days for the 22 January 2004 layer and 136 days for the 10 November 2003 layer. On tables, the 10 November 2003 snowfall was monitored for 143 days and the 4 January 2004 snowfall for 88 days.

2.4. Snow-Specific Surface Area Measurements

[21] Snow SSA was determined by measuring the adsorption isotherm of methane on the snow at liquid nitrogen temperature (77 K) using a volumetric method. A mathematical treatment [Brunauer et al., 1938] was used to extract the SSA from the isotherm. The method is detailed by Legagneux et al. [2002], who cite a measurement reproducibility of 6% and an accuracy better than 12%. Since that paper, the method was improved by taking into account the adsorption of methane on the stainless steel walls of the experiment container, as alluded to by Legagneux et al. [2004] and detailed by Domine et al. [2007]. The reproducibility was unchanged by these modifications, whose main effect was to reduce systematic errors. Methane adsorption on stainless steel was an artifact that was not previously taken into account in our estimate of systematic errors. Given that systematic errors can only be estimated, we still evaluate our current accuracy at 12%.

3. Results

3.1. Temperature Gradient Experiments

[22] Boxes containing both snow falls collected near Chamrousse and subjected to gradient metamorphism in a cold room were sampled at 3 levels, corresponding to temperatures roughly of \(-6, -10\) and \(-14^\circ\text{C}\), so that 6 SSA decay plots were obtained (Table 2). During sampling, the morphological modifications of the snow crystals were also observed. Qualitatively, from fresh graupel, crystals started to grow and to develop facets after a few days, typical of TG metamorphism. After 20 days, the initial shapes of the snow grains were no longer recognizable and

<table>
<thead>
<tr>
<th>Date of Snowfall</th>
<th>Initial Snow Density</th>
<th>Final Snow Density</th>
<th>Final Snow Density on Tables</th>
<th>Fresh Snow Crystal Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Nov 2003(^a)</td>
<td>0.10</td>
<td>0.19</td>
<td>0.27</td>
<td>Mostly rimed dendritic crystals</td>
</tr>
<tr>
<td>21 Nov 2003</td>
<td>0.08</td>
<td>0.21</td>
<td>-</td>
<td>Lightly rimed dendritic crystals, plates and needles</td>
</tr>
<tr>
<td>04 Jan 2004(^b)</td>
<td>0.01</td>
<td>0.20</td>
<td>0.16</td>
<td>Small rimed dendritic crystals</td>
</tr>
<tr>
<td>22 Jan 2004</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>Rimed dendritic crystals, capped columns and a few plates</td>
</tr>
</tbody>
</table>

\(^a\)These snowfalls were also monitored in the snowpack subjected to a low temperature gradient on the tables. Snow initial characteristics are the same as in the natural snowpack.

Table 1. Characteristics of the Snowfalls Studied in the Natural Snowpack at the LARS Site, Central Alaska

<table>
<thead>
<tr>
<th>Date of Snowfall</th>
<th>Initial Snow Density</th>
<th>Final Snow Density</th>
<th>Final Snow Density on Tables</th>
<th>Fresh Snow Crystal Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Nov 2003</td>
<td>0.10</td>
<td>0.19</td>
<td>0.27</td>
<td>Mostly rimed dendritic crystals</td>
</tr>
<tr>
<td>21 Nov 2003</td>
<td>0.08</td>
<td>0.21</td>
<td>-</td>
<td>Lightly rimed dendritic crystals, plates and needles</td>
</tr>
<tr>
<td>04 Jan 2004</td>
<td>0.01</td>
<td>0.20</td>
<td>0.16</td>
<td>Small rimed dendritic crystals</td>
</tr>
<tr>
<td>22 Jan 2004</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>Rimed dendritic crystals, capped columns and a few plates</td>
</tr>
</tbody>
</table>

Table 2. Conditions of Evolution of Sampled Snow, Parameters Obtained From Equation (1) and Correlation Coefficients \(R^2\)

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Snow Layer</th>
<th>Sampling Place</th>
<th>Initial Temperature (T_{in}, \text{deg C})</th>
<th>Mean Temperature (T_m, \text{deg C})</th>
<th>Initial Density, (\rho, \text{g cm}^{-3})</th>
<th>SSA(_D), (\text{cm}^2 \text{ g}^{-1})</th>
<th>Parameters (A, \text{cm}^2 \text{ g}^{-1})</th>
<th>Parameters (B, \text{cm}^2 \text{ g}^{-1})</th>
<th>(\Delta t, \text{hours})</th>
<th>(R^2)</th>
<th>(\Delta t_{go} \text{ or } \Delta t_{go}^*) (\text{hours})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alps</td>
<td>0</td>
<td>-15</td>
<td>0.075</td>
<td>638</td>
<td>59</td>
<td>674</td>
<td>16</td>
<td>0.979</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alps</td>
<td>0</td>
<td>-15</td>
<td>0.12</td>
<td>1015</td>
<td>81</td>
<td>820</td>
<td>27</td>
<td>0.997</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Alps</td>
<td>0</td>
<td>-4</td>
<td>0.12</td>
<td>752</td>
<td>72</td>
<td>709</td>
<td>22</td>
<td>0.971</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Alps</td>
<td>0</td>
<td>-10</td>
<td>0.14</td>
<td>551</td>
<td>100</td>
<td>988</td>
<td>-0.25</td>
<td>0.996</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Alps</td>
<td>0</td>
<td>-10</td>
<td>0.18</td>
<td>553</td>
<td>74</td>
<td>722</td>
<td>101</td>
<td>0.975</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Alps</td>
<td>0</td>
<td>-15</td>
<td>0.10</td>
<td>846</td>
<td>85</td>
<td>877</td>
<td>-0.5</td>
<td>0.986</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Alps</td>
<td>0</td>
<td>-15</td>
<td>0.05</td>
<td>961</td>
<td>109</td>
<td>1042</td>
<td>1</td>
<td>0.995</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Alps</td>
<td>0</td>
<td>-15</td>
<td>0.10</td>
<td>637</td>
<td>74</td>
<td>722</td>
<td>1</td>
<td>0.997</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Alps</td>
<td>0</td>
<td>-15</td>
<td>0.15</td>
<td>857</td>
<td>99</td>
<td>921</td>
<td>1</td>
<td>0.998</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)The mean absolute value of the temperature gradient \(|\text{grad}(T)_{in}|\) is calculated between the two buried temperature probes surrounding the layer of interest inside the snowpack.

\(^b\)SSA\(_D\) is the initial specific surface area of the snow sampled right after its fall.

\(^c\)Parameters \(A, B,\) and \(\Delta t\) derived from these isothermal experiments differ slightly from those presented by Legagneux et al. [2004] because of subsequent minor corrections (see text).
became more and more faceted and elongated, although crystals in the upper (and colder) part of the boxes seemed to be evolving more slowly. Depth hoar crystals started to form after about 2 months and crystal size increased with increasing temperature toward the bottom of the boxes. As in the work by Legagneux et al. [2003], logarithmic (SSA = $-A_0 \ln(t) + B_0$), exponential (SSA = $B_0 e^{-A_0 t}$), power (SSA = $B_{\text{power}} t^{-A_0}$) and linear laws (SSA = $-A_0 t + B_0$) were tested to parameterize the SSA decay rate. The average correlation coefficients, R^2, were 0.94, 0.72, 0.90 and 0.51, respectively, showing that the logarithmic fit worked best. This fit was further improved by adding the adjustable parameter D_t, as used by Legagneux et al. [2003] in equation (1).

An example of a SSA decay curve during these gradient experiments is shown in Figure 3 and parameters A, B and Δt are given in Table 2. Legagneux et al. [2003, 2004] observed a linear correlation between A and B for snow subjected to isothermal conditions at -15°C and proposed a theoretical explanation for such a correlation. A and B from gradient experiments are plotted in Figure 4, showing that they are aligned, but on a line different from that of the isothermal conditions. We note that these 6 data points are almost perfectly aligned, even though the decays were obtained at 3 different temperatures.

3.2. Field Measurements of the Natural Snowpack

The SSA of the four snowfalls studied in the natural snowpack of central Alaska was measured at least five times. The decays were best fitted using equation (1) and an example is given in Figure 5. A and B values from these fits are also plotted in Figure 4, showing that the four data points are well aligned. It is reasonable to suggest that the data points from the natural snowpack are on a line parallel to that of the cold room gradient experiments but slightly downshifted. However, we believe that this slight shift is not significant and that it is more meaningful to draw a single line through all the data points obtained under gradient conditions. This shift is probably due to systematic errors. Our volumetric equipment was taken apart and rebuilt after transport to Alaska. Minor modifications took place such as valve and tubing replacements, producing minute changes in their volumes, to which SSA values are extremely sensitive [Legagneux et al., 2002].

![Figure 4. Parameters A versus B from equation (1).](image)

Results from temperature gradient experiments (solid triangles) and from the natural snowpack in Alaska (solid squares) are located on the same line. Data from isothermal experiments at -15°C [Legagneux et al., 2004] (open circles) are aligned with those at -10°C (pluses) and -4°C (crosses) and with those of the quasi-isothermal snowpack of Alaska (open triangles). The solid and dash-dotted lines are least squares fits of the gradient and isothermal data, respectively.

![Figure 5. Time evolution of the SSA of the snow layer that fell on 10 November 2003 near Fairbanks, Alaska.](image)

One decay plot corresponds to the natural snowpack (open squares, experiment 16 in Table 2) that evolved under high-temperature gradients ($\text{grad}(T)_{\text{mean}} = 36^\circ\text{C} \text{ m}^{-1}$), while the other one is of the snow that fell on tables (solid triangles, experiment 20) and evolved under quasi-isothermal conditions (see text). The equivalent sphere radius for a SSA of 500 cm2 g$^{-1}$ is $r_e = 65 \mu$m.
great care was taken in volume measurement, very small
errors will produce different systematic errors each time the
system is rebuilt. We thus suggest that the \((A, B) \) data points
of Figure 4 obtained from cold room experiments and
fieldwork in Alaska are actually on a single straight line
and that the scatter is due to variations in systematic
errors. The least squares equation for this single line is:
\[
A = 0.135 B - 11.368 \quad (R^2 = 0.982).
\]

3.3. Quasi-Isothermal and Isothermal Experiments

[25] Two of the snow layers that accumulated on the
Alaska tables were sampled regularly. They also produced
logarithmic decay plots and their \(A \) and \(B \) values are
reported in Table 2. For comparison, we have also plotted
in Figure 4 the \(A \) and \(B \) values obtained by Legagneux et al.
[2004] from 7 isothermal SSA decay plots at \(-15^\circ C\), and
from another two plots at \(-10 \) and \(-4^\circ C\). As in the case of
the gradient experiments, all the isothermal and quasi-
iso-thermal \((A, B) \) values are on a single line. A more careful
look indicates that the points are actually on two distinct
parallel lines, slightly shifted from each other. Again, this is
due to slight changes in the volumes of the experimental
system that produced two different lines. (In fact, these data
were obtained from 3 distinct states of the experimental
system, but two of them resulted in the same systematic
errors in Figure 4). The least squares equation of this second
line is:
\[
A = 0.128 B - 21.838 \quad (R^2 = 0.952).
\]

[26] The main conclusion from these results is that all SSA
decay plots can be fitted using the logarithmic equation (1).
The \((A, B) \) values are linearly correlated. One correlation
exists for SSA decays under TG conditions, and another one
for decays under isothermal or quasi-isothermal (i.e., ET)
conditions. In both cases, all the \((A, B) \) points are aligned,
regardless of the temperature and the temperature gradient.
In the next section, we use these linear correlations to
propose an empirical method to predict the rate of SSA
decay rate of snow that can be used in models. We also test
the predictions of FZ06 with our data.

4. Discussion

4.1. General Objectives

[27] Equations predicting SSA decay are needed to quan-
tify the snow-atmosphere exchange of chemicals [Domine
and Shepson, 2002; Lei and Wanja, 2004; Daly and Wanja,
2004], the evolution of snow albedo [Flanner and Zender,
2006; Domine et al., 2006] and snow metamorphism in
general, since the rate of sublimation/condensation cycles
responsible for dry metamorphism include a SSA term [e.g.,
Sokratov, 2001]. From a purely intellectual point of view, a
physically based model would be satisfying, and the model
of Flanner and Zender [2006] is a solid step in that
direction. However, given the complexity of snow structure,
Flanner and Zender [2006] had to make critical approx-
imations, and in particular used nonconnected spherical
crystals. Confirming the results of Legagneux and Domine
[2005], they show that SSA decay rates depend on the
distribution of crystal sizes and on the irregularity of particle
spacing, two variables that cannot be routinely measured.
Therefore, in the end, they used two adjustable parameters,
\(\sigma_g \) and \(\varphi \), to take these variables into account. They
obtained \(\sigma_g = 2.3 \) from the data of Legagneux et al.
[2004] and \(\varphi = 5 \) from the data of Fukuzawa and Akitaya
[1993]. Even with this empirical character, their model is
complex and coupling with atmospheric chemistry or cli-
mate models increases calculation time. To simplify calcula-
tions, Flanner and Zender [2006] fit their model results to
equation (2), \(\tau \) and \(n \) being determined by standard curve-
fitting procedures, and propose to use tables where \(\tau \) and \(n \)
determined from 4 variables: temperature, temperature
gradient, density, and SSA\(_0\).

[28] Flanner and Zender [2006] have confirmed that a
fully physically based model of SSA decay would be
extremely complex. They have also shown that such a
model would require data that barely exist and that will
not be routinely measured in the near future. The table
based on four variables proposed by Flanner and Zender
[2006] is a welcome simplification but its use will not
always be simple particularly because temperature, temper-
ature gradients and density change continuously during
metamorphism. We therefore propose to use the experimen-
tal data presented here to simplify the description of the
SSA decay rate, and we test below a description as a function
of fewer variables, averaged over long time periods.

[29] Our approach is based on the correlation between \(A \)
and \(B \) of equation (1) (Figure 4), Legagneux et al. [2004]
showed that their data under ET conditions were very well
described by equation (2), also used by Flanner and Zender
[2006] and that equation (1) was an approximation of
equation (2). Furthermore, Legagneux et al. [2004] pro-
posed, from an analysis of LSW equations, an explanation
of why \(A \) and \(B \) were linearly correlated, showing that there
is more than just an empirical basis to equation (1).

[30] Legagneux et al. [2003] observed that the value of
\(B \) was close to the SSA of snow collected immediately
after its fall, SSA\(_0\). They therefore proposed to predict the
rate of isothermal decrease of snow SSA from equation (1)
with \(B = \text{SSA}_0 \) and deriving \(A \) from the \(A-B \) correlation.
The value of \(\Delta t \) in equation (1) could not a priori be determined
and they proposed to use the time between snowfall and
snow sampling as \(\Delta t \). In any case, the value of \(\Delta t \) was
observed to have only a small impact on the fit. For
example, for the top layer of the 2 April 03 sampling in the
Alps (experiment 15 in Table 2), changing \(\Delta t \) from 1 to
5 hours reduces \(R^2 \) from 0.994 to 0.984. For \(\Delta t = 10 \) hours,
we still have \(R^2 = 0.968 \).

[31] The problem with correlating SSA\(_0\), \(B \) and \(A \) as
suggested above is that it assumes that the rate of SSA
decay is temperature-independent, in contrast to the
modeling results of Legagneux and Domine [2005] and of
FZ06. Temperature dependence is expected, as sublimation
and condensation rates increase with the water vapor
pressure. With the additional data obtained here, we show
below that a closer observation of SSA\(_0\)-B-A correlations
allows us to propose temperature-dependent parameteriza-
tions of SSA decay rates. On the basis of Figure 4, we
distinguish two distinct sets of conditions: TG metar-
phism and ET metamorphism, the latter one applying when
the temperature gradient is below a given threshold.

4.2. Parameterization for Temperature Gradient

Conditions

[32] Our purpose is to predict \(A, B \) and \(\Delta t \) values, defined
in equation (1), knowing SSA\(_0\), the initial snow SSA
measured just after precipitation, and \(T_m \), the mean temperature of evolution of the snow layer during the period of interest. Let \(A'_g \), \(B'_g \) and \(\Delta t'_g \) be the values of the rate parameters of equation (1) that we want to predict for TG conditions. We want \(A'_g \) and \(B'_g \) to be as close as possible to \(A \) and \(B \) determined from the experiments. Ideally, \(\Delta t'_g \) would be close to \(\Delta t \), but this is not crucial for reasons detailed above. A careful consideration of the data of Figure 4 and Table 2 indicates that \(A \) and \(B \) values are higher for higher values of SSA0 and for lower mean temperatures of evolution of the snow, \(T_m \). Hence we propose to test whether it is possible to determine \(A'_g \) and \(B'_g \) using equations (3) and (4):

\[
A'_g = a_g \text{SSA}_0 - b_g(T_m + c_g)
\]

\[
B'_g = x_g \text{SSA}_0 - y_g(T_m + z_g)
\]

An extra constraint on the predicted parameters is that at the time of snow sampling, \(t = 0 \) we must have \(\text{SSA}_0 = \text{SSA}_0 \), in other words \(\text{SSA}_0 = B'_g - A'_g \ln(\Delta t'_g) \), i.e.,

\[
\Delta t'_g = e^{-\frac{\text{SSA}_0}{A'_g}} \tag{5}
\]

We adjusted \(a_g \), \(b_g \), \(c_g \), \(x_g \), \(y_g \), \(z_g \) in order to minimize the difference between \(A \) and \(A'_g \) and between \(B \) and \(B'_g \). This was done by plotting \(A \) as a function of \(A'_g \) and adjusting \(a_g \), \(b_g \) and \(c_g \) to maximize the correlation coefficient, while maintaining a slope of 1 and an intercept of 0. The same was done for \(B \) and \(B'_g \) and \(x_g, y_g \) and \(z_g \). We obtained with \(A'_g \), \(B'_g \) and \(\text{SSA}_0 \) in \(\text{cm}^2 \text{ g}^{-1} \), \(T_m \) in \(^\circ \text{C} \), and \(\Delta t'_g \) in hours:

\[
A'_g = 0.0961 \text{SSA}_0 - 3.44(T_m + 1.90) \tag{6}
\]

\[
B'_g = 0.659 \text{SSA}_0 - 27.2(T_m - 2.03) \tag{7}
\]

\[
\Delta t'_g = e^{-\frac{-0.341 \text{SSA}_0 - 27.2(T_m - 2.03)}{0.0961 \text{SSA}_0 - 3.44(T_m + 1.90)}} \tag{8}
\]

Figure 6 compares \(A \) and \(A'_g \), and \(B \) and \(B'_g \). The comparison between \(\Delta t \) and \(\Delta t'_g \) can be seen in Table 2. From expressions (6) and (7), the evolution of snow SSA under gradient conditions is, again with \(t \) in hours, \(T_m \) in \(^\circ \text{C} \) and \(\text{SSA}_0 \) and \(\text{SSA}_g(t) \) in \(\text{cm}^2 \text{ g}^{-1} \):

\[
\text{SSA}_g(t) = [0.659 \text{SSA}_0 - 27.2(T_m - 2.03)] - [0.0961 \text{SSA}_0 - 3.44(T_m + 1.90)]
\]

\[
\cdot \ln \left[t + e^{\frac{-0.341 \text{SSA}_0 - 27.2(T_m - 2.03)}{0.0961 \text{SSA}_0 - 3.44(T_m + 1.90)}} \right] \tag{9}
\]

Uncertainties on the coefficients were found to be less than 3% by propagating random errors of 6% (the reproducibility of a SSA measurement) on individual SSA measurements. We found that random propagation in a given decay plot produced changes in experimental (\(A \), \(B \)) values of less than 4% and less than 8 h on \(\Delta t \). The determination of \(A'_g \), \(B'_g \) and \(\Delta t'_g \) takes into account 10 \(A \), \(B \) and \(\Delta t \) values, resulting in fluctuation damping and in small errors.

4.3. Parameterization for Quasi-Isothermal Conditions

The same procedure was used to determine the predicted values of the rate parameters under ET conditions, \(A'_i \) and \(B'_i \) (Figure 7). The results are

\[
A'_i = 0.0760 \text{SSA}_0 - 1.76(T_m - 2.96) \tag{10}
\]

\[
B'_i = 0.629 \text{SSA}_0 - 15.0(T_m - 11.2) \tag{11}
\]

\[
\Delta t'_i = e^{\frac{-0.371 \text{SSA}_0 - 15.0(T_m - 11.2)}{0.0760 \text{SSA}_0 - 1.76(T_m - 2.96)}} \tag{12}
\]

The rate expression for the evolution of SSA under isothermal conditions is then, again with \(t \) in hours, \(T_m \) in \(^\circ \text{C} \) and \(\text{SSA}_0 \) and \(\text{SSA}_i(t) \) in \(\text{cm}^2 \text{ g}^{-1} \):

\[
\text{SSA}_i(t) = [0.629 \text{SSA}_0 - 15.0(T_m - 11.2)] - [0.0760 \text{SSA}_0 - 1.76(T_m - 2.96)]
\]

\[
\cdot \ln \left[t + e^{\frac{-0.371 \text{SSA}_0 - 15.0(T_m - 11.2)}{0.0760 \text{SSA}_0 - 1.76(T_m - 2.96)}} \right] \tag{13}
\]
As for equation (9), uncertainties on the coefficients were found to be less than 3%.

4.4. Data-Model Comparisons

[34] Before discussing the conditions of validity of equations (9) and (13), it is necessary to compare their predictions to our experimental data. At the same time, we also test the predictions of FZ06, using equation (2), which gives an excellent approximation of the output of FZ06, using values of τ and n kindly supplied by Flanner and Zender [2006].

[35] Figure 8 compares four experimental SSA decay plots with predictions from equation (9) or (13) and of FZ06. Equations (9) and (13) reproduce all decay plots well, as expected because the adjustable parameters of these equations were fitted with those data. This agreement is nevertheless required to justify our explicit and implicit assumptions: (1) there are two distinct metamorphic regimes; (2) snow density is not a critical variable; (3) the value of the temperature gradient is not important within each regime; (4) the mean temperature of evolution is an acceptable substitute to the detailed temperature history. These aspects are discussed in more detail in subsequent paragraphs. Less expected is that FZ06 reproduces our data well in most cases. Indeed, FZ06 was tested by its authors.
under TG conditions with the data of Fukuzawa and Akitaya [1993] and in view of the nature of these data, it was not certain that it would fit actual SSA data well. The fit for experiment (13) is good, in fact as good as equation (9). Experiment (20) also shows an excellent fit. Experiment (16), although still good, is not fitted quite as well as the others. These runs of FZ06 were done without prior adjustments of \(\sigma_g \) and \(\phi \): respective values of 2.3 and 5 were used as recommended by Flanner and Zender [2006]. It would probably be possible to improve the fits by adjusting \(\sigma_g \) and \(\phi \), but we wanted to test the predictive value of FZ06. We conclude that it is in general quite good. We now discuss the conditions of validity of equations (9) and (13), commenting whenever relevant on the expected performance of FZ06 under the same conditions.

4.5. Conditions of Validity of the Rate Equations

[36] Empirical relationships are generally valid only in the range of values investigated experimentally. In particular, equations (1), (9) and (13) are not valid at long times, because SSA values must remain positive. Legagneux et al. [2004] showed (their Figure 4) that in the isothermal case, equation (1) is a satisfactory approximation of the more accurate Ostwald ripening equation in the time range 0.5 to about 150 days. At short evolution times, equation (1) is valid only when \((t + \Delta t) > 1 \), as \(SSA_0 > SSA(t) \). The validity at long evolution times, estimated from our data, appears to be about 150 days in the ET case. This is adequate for most applications to seasonal snowpacks. In the TG case, depth hoar crystals form and SSA seems to trend asymptotically to about 80 cm\(^2\) g\(^{-1}\) (\(r_e = 409 \) \(\mu \)m). The validity of equation (9) is then about 100 days. Beyond that, taking a constant value of about 80 cm\(^2\) g\(^{-1}\) appears adequate.

[37] That the SSA of depth hoar reaches an asymptotic nonzero value is explained by the crystal shape (Figure 1). Observed growth is essentially along the axis of the hollow prism. To a first approximation [Domine et al., 2001], the SSA of sufficiently large crystals will then be that of an infinite ice slab of the same thickness as that of the hollow prisms. This asymptotic value is not predicted by FZ06, which treats crystals as indefinitely growing spheres. However, Figure 8 shows that for durations relevant to seasonal snowpacks, this aspect does not cause major errors in the predictions of FZ06.

[38] Figure 4 indicates that there are two regimes of SSA decay rate: ET and TG conditions, that correspond to the domains of predominance of two physical processes: curvature-driven metamorphism in the ET case [Colbeck, 1980; Flin et al., 2003; Domine et al., 2003; Legagneux et al., 2004] and temperature gradient-driven metamorphism in the other case [Marbouty, 1980; Colbeck, 1983; Domine et al., 2003]. Table 2 suggests that there may be an abrupt transition between both processes, as the mean temperature gradient for the ET evolution in Alaska was 8 to 9°C m\(^{-1}\). Marbouty [1980] suggested that 20°C m\(^{-1}\) was the threshold gradient for depth hoar formation, so that the boundary between ET and TG conditions, as far as SSA decay is concerned, lies somewhere between 9 and 20°C m\(^{-1}\).

[39] This observation seems to contradict Colbeck [1982] who stated that “radius of curvature differences cannot control the rate of metamorphism except possibly for brief periods immediately following a snowfall, when dendrite branches with a mean radius of \(10^{-3} \) mm might occur". Here we suggest that as long as the temperature gradient is below a given threshold, ET metamorphism will control the rate of SSA decrease. This disagreement may only be apparent, however, as Colbeck was concerned with grain size and aspect, while we discuss SSA. Flanner and Zender [2006] also clearly show that ET metamorphism has a significant effect on SSA decay rate. Their Figure 5 demonstrates that under ET conditions, SSA decay rate is only about half of that under TG = 50°C m\(^{-1}\).

[40] In the ET case, the \(T_m \) range studied is fairly narrow, from \(-19.2 \) to \(-4°C\), and one may wonder whether equation (13) applies beyond that range. Arguments supporting that it does include (1) the snow layers studied in Alaska were subjected to temperatures ranging from \(-43°C\) to 0°C; (2) Legagneux et al. [2004] give theoretical support for the \((A, B)\) correlation that is a priori valid at all temperatures. Of course, these considerations do not constitute a proof and additional data at low temperatures are desirable. However, we feel that extrapolating equation (13) below \(-19.2°C\) is reasonable.

[41] The situation is more complex in the TG case. An extra variable is the magnitude of the temperature gradient. Water vapor fluxes depend on this magnitude and intuitively, one would expect the rate of SSA decay to depend on this variable. From Table 2, the range of mean temperature gradients studied is only from 31 to 54°C m\(^{-1}\). Within this range, we detect no effect of the magnitude of the temperature gradient on SSA decay rate. However, the above values are averages over long time periods and gradient values as high as 198°C m\(^{-1}\) were encountered at the beginning of the season of the Alaska field study. This leads us to suggest that the magnitude of the temperature gradient, as long as it is above a certain threshold, may not have a significant effect on SSA decay rate. This may seem counterintuitive, but one should not confuse metamorphic rate and SSA decay rate. A possible explanation is that microscopic details such as the thickness of the walls of depth hoar crystals determine SSA, rather than macroscopic characteristics such as visual crystal size. While crystal size is likely affected by the temperature gradient, it is possible that microscopic details are less affected. It may then be reasonable to suggest that equation (9) may apply over the whole range of temperature gradients observed in snowpacks. FZ06 predicts an effect of the magnitude of the temperature gradient, but this is expected since they approximate crystals as spheres. Spheres will then grow more rapidly under higher gradients and SSA will decay faster. Models with more realistic crystal shapes are needed to better understand the impact of the temperature gradient on SSA decay rates.

[42] Other variables such as density should also affect the SSA decay rate, as indicated by the models of Legagneux and Domine [2005] and by FZ06. Density certainly has an effect, but Table 2 shows that our experimental density range is narrow, with all values \(<0.18 \) g cm\(^{-3}\). One value was very low: 0.01 g cm\(^{-3}\), but these low values always lead to very rapid compaction so their effect is very time limited. We therefore think that density effects, if they exist, were too small to be detected by our measurements. Similarly, Marbouty [1980] could not detect density effects.
in his crystal growth rates for low-density snows (<0.15 g cm\(^{-3}\)). We cannot, however, exclude the possibility that higher densities would have a detectable effect. In fact, two measurements two months apart of the SSA of an identified windpack of density 0.48 g cm\(^{-3}\) evolving under ET conditions in the high Arctic show that its SSA had only decreased from 160 to 150 cm\(^2\) g\(^{-1}\) [Domine et al., 2002]. This slow decrease in high-density windpacks was predicted by Flanner and Zender [2006], which does suggest that SSA decays much slower in high-density snow. In that case, equation (13) would not apply to very dense snow such as Arctic windpacks.

The permeability and diffusivity of snow, by modifying water vapor transfer rates, may also modify SSA decay rates. Snow permeability was measured in Alaska, as will be detailed in a subsequent publication. Values between 40 and 650 \(10^{-10}\) m\(^2\) were found, but no correlation between permeability and SSA decay rate was observed. Moreover, permeability increased several fold during the evolution of a given snowfall under TG conditions and this had no detectable effect on SSA decay plots. Possibly this is for reasons similar to those invoked to explain why the magnitude of the temperature gradient plays no obvious role: the microstructure of snow crystals is what actually determines SSA, rather than parameters such as crystal size or crystal growth rates.

Last, our equations were obtained studying the evolution of fresh snow under ET and TG conditions and may not apply to the evolution of aged snow. For example the TG metamorphism of melt-freeze layers formed in the fall may in fact result in a SSA increase.

To conclude this section, we suggest that equations (9) and (13) apply under wide ranges of temperature and temperature gradient. We see no experimental indication that snow permeability, within the range of values studied, affects SSA decay rates. The main limitation to our equations is the density range: our fresh snows had densities <0.18 g cm\(^{-3}\) and density never increased beyond 0.28 g cm\(^{-3}\). Windpack measurements under ET conditions [Domine et al. 2002] and FZ06 predictions under TG conditions indicate that SSA decay is slower in high-density snows. We therefore recommend to use equations (9) and (13) only for low- to medium-density snows, <0.30 g cm\(^{-3}\), as found in the Alpine and taiga snowpack types. We recommend further measurements of the SSA evolution of dense snows such as Arctic windpacks.

4.6. Temperature Dependence of SSA Decay Rates

The temperature derivatives of equations (9) and (13) have a complex form that does not lend itself to simple discussions. It is easier to show Figure 9, which plots the SSA decrease of snow with SSA\(_0\) = 1000 cm\(^2\) g\(^{-1}\). As expected, SSA remains lower at all evolution times when temperature is higher. Figure 9 shows that the rate of decrease is more sensitive to temperature when a gradient is present.

4.7. Climate Change and Snow SSA

A legitimate question is how climate change will affect snow SSA. As detailed in the introduction, this is important to predict how air-snow exchange of chemical species will be modified by climate change. However, it will also affect physical variables such as albedo that determine the energy budget of the surface. Climate change-induced modifications of snow SSA may then result in climate feedbacks.

Climate change will affect many physical variables that affect snow SSA. These include temperature but also (1) the amount of precipitation, which impacts the temperature gradient; (2) the wind speed, which affects snow density; and (3) the frequency of precipitation events, which affects the age of the surface snow layer. Extensive discussion of the climate change–snow SSA interactions is not within our current capabilities but we wish to motivate investigations of these interactions by detailing a few selected cases.

Figure 9 shows that warming will result in a lower snow SSA. Hence snow albedo, which decreases with increasing grain size [Warren, 1982] and with decreasing SSA [Domine et al., 2006], decreases with climate warming. If all other variables remained equal this would produce a positive feedback on warming.

The other two climate change-induced modifications discussed here are: (1) an increase in precipitation without significant warming and (2) an increase in precipitation concomitant with warming. In case 1, the increased precipitation will reduce the temperature gradient in the snowpack and in some cases, may take it below the ET/TG threshold, so that equation (13) rather than equation (9) will apply.
enforced soot deposition [Jacobson, 2004]. These feedbacks are positive. While we mention extra positive feedbacks such as the enhanced decay rate of SSA caused by warming, we stress that negative feedbacks may take place and need to be quantified to accurately predict climate change.

4.8. Final Remarks

[51] The main result from this work is that both under ET and TG conditions the SSA decay rate obeys equation (1). Adjustable parameters A and B are linearly correlated and two distinct correlations are found for the ET and TG conditions. We suggest that this is due to two different processes being the driving forces under each condition. The threshold between both regimes is found to be for a temperature gradient somewhere between 9 and 20°C m$^{-1}$. We propose and verify empirically that A, B and Δt values can be accurately predicted using the SSA value of the snow right after its fall, SSA_0, and the mean temperature of evolution of the snow layer T_m. We thus obtain rate equations (9) and (13) that predict snow SSA as a function of time and mean temperature, for TG and ET conditions. These equations predict that SSA decay rates increase with increasing temperature and this increase is greater under TG conditions. We discuss the conditions of applicability of equations (9) and (13) and conclude that they should apply over a wide range of temperature and temperature gradient values. The main limitation to these equations is that they may not apply for snow densities greater than 0.30 g cm$^{-3}$ and we recommend further measurements of SSA decay in high-density snow. We thus hope that equations (9) and (13) can soon be applied to model atmosphere-snow chemical exchanges and snow physical processes.

[54] The SSA of recently fallen snow, SSA_0, is necessary to calculate the coefficients of equations (9) and (13). Until we understand the factors that determine SSA_0, we recommend using mean values from the compilations of Legagneux et al. [2002] and Domine et al. [2007]. For dendritic crystals, unrimed to heavily rimed, the recom-

Figure 10. Effect of a modification in metamorphic regime, from gradient (TG) to isothermal (ET), on the rate of decrease of snow SSA (with an initial snow SSA of 1000 cm2 g$^{-1}$). This modification can be caused by an increase in precipitation induced by a change in climate and results in a slower decrease of snow SSA. On this graph, because of the logarithmic scale and because SSA is plotted against t instead of $(t + \Delta t)$, the curves do not start at $SSA_0 = 1000$ cm2 g$^{-1}$.

Figure 11. Effect of a modification in metamorphic regime combined with a warming of 4°C on the rate of decrease of snow SSA (with an initial snow SSA of 1000 cm2 g$^{-1}$). After less than 1 day, snow SSA will be higher in a warmer climate. On this graph, because of the logarithmic scale and because SSA is plotted against t instead of $(t + \Delta t)$, the curves do not start at $SSA_0 = 1000$ cm2 g$^{-1}$.
mended value is 849 cm2 g$^{-1}$ ($r_\text{c} = 39$ μm). For small columns and bullet combinations the value is 809 cm2 g$^{-1}$ ($r_\text{c} = 40$ μm). For small plates, needles and columns, the value is 658 cm2 g$^{-1}$ ($r_\text{c} = 50$ μm) and for snow falling when the ground air temperature is >0°C, the value is 503 cm2 g$^{-1}$ ($r_\text{c} = 65$ μm). Predicting SSA$_0$ will be complex because it is determined by snow microstructure. We speculate that it could be predicted by crystal modeling of growth using physical and chemical variables within and below the cloud, including the concentration of ice nuclei, the supersaturation and temperature within the cloud, the cloud cooling rate and the temperature and humidity profiles between the cloud and the ground.

[55] Acknowledgments. The experimental work was performed in France and was funded by CNRS through Programme National de Chimie Atmosphérique. The Alaska fieldwork was partially supported by Chapman Chair funds, kindly supplied by Norbert Understeiner. A.S.T. and F.D. thank the Geophysical Institute, University of Alaska Fairbanks, for hosting them during the fieldwork, while they were supported by CNRS and the French Ministry of Research. Additional funds were supplied by the International Arctic Research Center to partially support A.S.T. We all extend our warm thanks to Bill Hauer and his staff for proposing the LARS site for this study and for doing whatever was possible to facilitate our fieldwork. Hajo Eicken is grateful thanked for the use of the cold rooms at the Geophysical Institute. Mark Flanner kindly supplied the n and τ values used in Figure 8. Comments by two anonymous reviewers and by Steve Warren were helpful in improving initial versions of this paper.

References
Cabanis, A., L. Legagneux, and F. Domine (2002), Evolution of the specific surface area and of crystal morphology of Arctic fresh snow during the ALERT 2000 campaign, Atmos. Environ., 36, 2767–2777.
Lei, Y. D., and F. Wania (2004), Is rain or snow a more efficient scavenger of organic chemicals?, Atmos. Environ., 38, 3557–3571.

F. Domine and A.-S. Taillandier, Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, BP 96, F-38402 Saint-Martin d’Hères Cedex, France. (florent@lgee.obs.ujf-grenoble.fr)
T. A. Douglas and M. Sturm, U.S. Army Cold Regions Research and Engineering Laboratory, P.O. Box 35170, Fort Wainwright, AK 99703-0170, USA.
W. R. Simpson, Geophysical Institute, University of Alaska Fairbanks, P.O. Box 757320, Fairbanks, AK 99775-7320, USA.