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ABSTRACT: Coccidioidomycosis (Valley Fever) is a fungal infection found
in the southwestern United States, northern Mexico, and some places in
Central and South America. The fungi that cause it (Coccidioides immitis
and Coccidioides posadasii) are normally soil dwelling, but, if disturbed,
become airborne and infect the host when their spores are inhaled. It is
thus natural to surmise that weather conditions, which foster the growth
and dispersal of Coccidioides, must have an effect on the number of cases
in the endemic areas. This article reviews our attempts to date at quan-
tifying this relationship in Kern County, California (where C. immitis
is endemic). We have examined the effect on incidence resulting from
precipitation, surface temperature, and wind speed. We have performed
our studies by means of a simple linear correlation analysis, and by
a generalized autoregressive moving average model. Our first analysis
suggests that linear correlations between climatic parameters and in-
cidence are weak; our second analysis indicates that incidence can be
predicted largely by considering only the previous history of incidence in
the county—the inclusion of climate- or weather-related time sequences
improves the model only to a relatively minor extent. Our work therefore
suggests that incidence fluctuations (about a seasonally varying back-
ground value) are related to biological and/or anthropogenic reasons,
and not so much to weather or climate anomalies.
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INTRODUCTION

Much is known about the biological, medical, and indeed the epidemiologic
aspects of Coccidiodes immitis (C. immitis) and Coccidiodes posadasii (C.
posadasii), the fungi that cause Valley Fever (coccidioidomycosis) (see, for
example, Ref 1 and references therein). Coccidioides have a complete life
cycle as soil-dwelling organisms, but if they are disturbed and become airborne,
they are able to infect a host via the respiratory tract when the fungi spores are
inhaled.

Given its wide geographic distribution, it is evident that Coccidioides are
able to flourish within somewhat varied climatic environments. Endemic areas
include2 the southern part of the San Joaquin Valley in California, southern
California, the southern part of Arizona, New Mexico, and Texas, most of
northern Mexico, and some areas in Guatemala, Honduras, Venezuela, north-
eastern Brazil, Argentina, and Paraguay. There are some variations in climate
in these areas: for example, the southern San Joaquin Valley gets most of
its precipitation in the winter, whereas the southern part of Arizona gets late
summer monsoon rains as well as frontal systems in winter.

Conventional wisdom would suggest that climatic fluctuations might affect
the rate at which humans become infected.1 For example, a wetter-than-normal
rainy season might help Coccidioides bloom; windy spells might facilitate
the dispersal of the fungus; hot summers could be anticipated to suppress
competing organisms, thus enhancing the survival of Coccidioides.3 Indeed,
anecdotal evidence to this effect is well documented in the literature.4–13

There have been a number of attempts at demonstrating this connection
quantitatively. They can be divided into two groups: (i) in Arizona, where C.
posadasii is endemic, a strong connection has been reported13–15 between cli-
matic patterns and coccidioidomycosis incidence, whereas (ii) in Kern County,
California, where C. immitis is endemic, only a weak connection has been
found.16,17 In this article, we endeavor to give an overview of our work with
incidence and weather data in Kern County. For the purpose of comparison, in
this article we discuss some salient points in connection to the works pertaining
to Arizona and provide a summary of our own work.

ARIZONA: INCIDENCE–WEATHER CORRELATIONS
AND MODELS

Kolivras and Comrie14 found that antecedent precipitation and temperature
are moderate climate risk factors for valley fever in Pima County (which in-
cludes Tucson). They developed a multivariate model to account for Valley
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Fever incidence in a given month based on climate conditions and anomalies
in the antecedent 2 years. Their model uses and predicts a metric called the
transformed incidence anomaly. This is the monthly incidence anomaly rela-
tive to the annual (rather than the climatological, or climatological monthly)
mean. The maximum transformed incidence anomalies they reported in Pima
County are about 10% and their model predicts up to half of some anomalies.
The transformed incidence is insensitive to uniform increases in monthly in-
cidence, which results in an absolute annual increase (e.g., an epidemic), but
which does not change the relative contribution of each month to the annual
incidence. (In contrast, the 1991–1995 epidemic in Kern County increased
interannual and intra-annual variations in incidence by about 10-fold. This
appears to be the largest well-documented epidemic on record.)

Komatsu et al.13 performed a Poisson regression in an effort to model
monthly (1998–2001) Valley Fever incidence in Maricopa County, which in-
cludes Phoenix. They found a large correlation (R2 = 0.75) between incidence
and cumulative rain in the preceding 7 months, average temperature during the
preceding 3 months, dust during the preceding month, and precipitation in the
preceding 2 months in proportion to the preceding 7 months.

Comrie15 explored the climate–incidence connection (for 1992–2003 Pima
County data) using PM10 (particulate matter of size less than 10 �m) con-
centrations as a proxy for C. posadasii abundance in the atmosphere, while at
the same time accounting for precipitation time series. The rationale for using
PM10 is clear: soil dust emitted into the atmosphere from endemic regions may
carry a proportional concentration of Coccidioides spores (size ∼ 2 × 5 �m).
Comrie devised an exposure-day methodology, which allowed him to estimate
the date of exposure adaptively depending on whether the onset, diagnosis,
or report date was available for each patient. Using this approach, he identi-
fied a bimodal distribution of the monthly incidence data—a pattern that had
not been clearly seen in previous analyses. Comrie then grouped the data into
seasons and was able to produce a model that predicted closely the observed
disease incidence. This model combined the lagged seasonal precipitation, and
concurrent seasonal dust and precipitation, and was able to explain 80% of the
variance in coccidioidomycosis seasonal incidence data.

KERN COUNTY: INCIDENCE–WEATHER CORRELATIONS
AND MODELS

The Kern County seasonal climate was described in detail in Ref. 16. The
area receives in the neighborhood of 16.5 cm of rain a year, largely in the winter.
Summers are hot and dry—usually reaching 43◦C in July, with virtually no
precipitation. May and June experience the largest wind speeds-–and average
of the order of 3.5 m/sec, with maxima usually less than 15 m/sec, and very
rarely exceeding 20 m/sec. Coccidioidomycosis incidence (number of cases per
100,000 population) also has a corresponding yearly cycle, with the number



76 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

generally increasing toward the late fall (incidence near 17 per month per
100,000 population), decreasing in the winter, and reaching a minimum in the
spring and summer (incidence near 4.7 per month per 100,000 population).

The work on Kern County data so far has searched for a connection be-
tween the fluctuations of Valley Fever incidence (about a seasonally varying
background) and climate anomalies, that is, we do not endeavor to explain the
seasonal behavior of incidence in terms of climate parameters; instead, we try
to explain incidence fluctuations in terms of weather anomalies. Furthermore,
we do not seek to explain or model effects of relatively infrequent events,
such as the December 1977 dust storm in Kern County,7 or the Northridge
Earthquake of 1994—both of which produced large outbreaks of the
disease.18

The climatic variables we have investigated in connection with coccid-
ioidomycosis incidence are precipitation, surface temperature, and wind speed
(which we take as a proxy for spore abundance in the atmosphere). We present
in FIGURE 1 the annual cycle of coccidioidomycosis incidence in Kern County,
and some potential climate risk factors. FIGURE 1 was graphed from monthly
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FIGURE 1. Annual cycle of coccidioidomycosis incidence and potential climate risk
factors from 1980 to 2002. (a) Monthly mean incidence N̄ (# per month per 100,000 pop-
ulation), (b) precipitation P̄ (mm per month), (c) wind speed Ū (m per sec), (d) surface
temperature T̄ (C). Bars. Two standard deviations of the interannual variability computed
separately for each month. Standard deviations computed using 1980–2002 data for inci-
dence, and 1961–2002 for climate variables.
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1980–2002 data for incidence and 1961–2002 for climate variables. The bars
indicate intramonth variability. Their size was computed as twice the standard
deviation for the interannual variability computed separately for each month.
We performed a (univariate) lag-correlation analysis between incidence sea-
sonal anomalies on the one hand, and climatic anomalies in each of precip-
itation, surface temperature, and wind speed on the other hand.16 We found
that only precipitation 8 months prior to incidence had a statistically highly
significant correlation with incidence (P = 0.0020), but whereas this is con-
sistent with the expectation than an unusually wet winter can lead to larger
incidence later in the Coccidioides season, the magnitude of the correlation
was quite small (R2 = 0.04). Further analysis of bivariate correlations led to
inconclusive results. To try to capture nonlinear correlations, we also investi-
gated correlations of incidence anomalies and wind speed anomalies squared
and cubed, as well as with wind speeds only within a certain window (from
some minimum to some maximum). These efforts also led to no statistically
significant correlations.

We used 9 years (Jan 1995–Dec 2003) of weekly mean atmospheric condi-
tions and incidence data to construct a statistical model which allows a degree
of prediction.17 We presented a generalized autoregressive moving average
(GARMA) model that maximizes the accuracy of prediction while minimiz-
ing the number of input variables.19 In other words, we maximize the predictive
skill of the model while keeping only the most important input parameters, and
removing from the input those variables that do not contribute (or contribute
minimally) to the prediction task. The method starts from putting into the
model parameters that might help predict incidence. We used prior incidence
history, as well as precipitation, wind speed, and temperature. As expected
(since the number of input parameters is very large), this first step leads to
an excellent model. We interpreted this to mean that at least some of the in-
put parameters contain information highly relevant to our prediction task. We
called this result the full model (FIG. 2a). The second step entails the mini-
mization procedure mentioned above. We present this result (the final model)
in FIGURE 2b. Our most important finding17 was that the final model does not
require any weather parameters—it turned out that in order to predict weekly
incidence at some time t, the most important input parameters were weekly
incidence at times t-k, where k = 1, 2, 4, 26 weeks. We point out that the
incidence surges at the end of the period under consideration are predicted
by the final model. For comparison, we forced the model to consider the best
way to use weather parameters to predict incidence (while not considering
information about the history of prior incidence). We called this the environ-
mental model. The result is given in FIGURE 2c. This model predicts only the
seasonal variations of incidence (as expected, since weather and incidence
have a yearly cycle), but is quite unable to predict the surges in the early
2000s.
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FIGURE 2. Reported Valley Fever incidence in Kern County, California (cases per
100,000 population) and three models for the period Jan 1996–Dec 2003. In all three panels,
thin solid lines indicate incidence, and dashed heavy lines correspond to model results: (a)
full model, (b) final model, and (c) environmental model. The year 1995 is missing from
the model results because at least 1 year of Valley Fever incidence data is required to start
predicting future values.

DISCUSSION

At this point, our work suggests that fluctuations in incidence are probably
due more to human activities (such as construction on previously undeveloped
land) or biological processes taking place in the field (see complex systems dis-
cussion below), rather than to climatic fluctuations. In contrast with the results
reported in Ref. 14, we found16 only a weak correlation between anomalies in
weather variables and incidence in Kern County. The discrepancy might have
been due to the fact that climate exhibits important differences in Pima and
Kern counties. The mathematical treatments were also different. The differ-
ences in the two approaches are mainly in the processing of raw incidence and
weather data, although both papers analyzed correlations in a linear model.

Studies to date have demonstrated a strong incidence–climate connection in
Arizona,15 but not in California.17 Perhaps this is because the latter studies use
wind and not PM10 as a proxy for spore abundance in the atmosphere. Unfortu-
nately, there are no actual measurements of Coccidioides spore concentrations
in the atmosphere as a function of PM10 concentrations, wind speed, or any
other parameter. In the end, we can do no better than give plausibility argu-
ments as to why a particular parameter should be a good proxy without any
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hard data to support our surmise. However, given the explanatory power of
precipitation and PM10 for coccidioidomycosis incidence in Arizona,15 these
predictors should be fully evaluated in Kern County. PM10 may be a better
proxy for spore abundance in the atmosphere than wind speed, although this
may be more so in Arizona than in Kern County, which has one of the worst air
pollution problems in the country. Kern County gets large PM10 contributions
from paved and unpaved road dust, as well as from farming operations (dust
that presumably does not contribute spores since the fungus does not grow in
cultivated soils). Indeed, as much as 81% of PM10 levels is estimated to be of
anthropogenic origin in the summer, and 89% in the winter.20 Kern County is
located at the southern end of California’s Central Valley and the prevailing
winds are northerly, which tends to accumulate pollutants from throughout the
valley up against the southern mountains. In Kern County, PM10 levels can
thus be expected to have a significant contribution from sources not directly
related to C. immitis. Nevertheless, PM10 might be a better proxy to the extent
that one is only trying to index dusty days. In phenomenological approaches,
such as those in Refs. 13–17, it does not matter what the actual connection
is between PM10 and spore abundance. It only matters that a good incidence
predictor be found.

Interestingly, according to preliminary studies conducted in Arizona,21 there
seems to be a link between smoking and risk of coccidioidomycosis infection:
apparently, smokers have a higher risk of infection than nonsmokers; however,
smoking cessation restores the risk back to the level of nonsmokers. Clearly,
one has to wonder whether this smoking–coccidioidomycosis link results from
a suppression of the immune system. And if so, is there a similar effect due to
other environmental contaminants (such as NOx, ozone, and PM10)? The effect
reported in Ref. 15 might be one instance of a more general effect—perhaps
PM10 concentrations point to coccidioidomycosis infection not necessarily (or
not only) because PM10 is a good proxy for Coccidioides concentrations in the
atmosphere, but because PM10 pollution might adversely affect the immune
system, thus increasing the risk of infection. Indeed, there is one study22 in
which repeated exposure to diesel exhaust particles showed a sustained pattern
of downregulation of T cell–mediated immune responses. This suppression
in cell-mediated immunity could be considered a risk for coccidioidomyco-
sis. Furthermore, as pointed out by Terashita and Capone–Newton,23 PM10 is
possibly also a marker for other air pollutants. Van Loveren et al.24 found that
ozone can inhibit resistance to an intrathecal challenge with Listeria monocy-
togenes, indicating suppression of Th1 immune responses. Again, there may
be a similar effect with Valley Fever, turning PM10 into a good incidence pre-
dictor even if it arises largely from anthropogenic sources, which are unrelated
to Coccidioides spore concentrations in the atmosphere.

Disentangling the differences between our results and those in Arizona is
one of our main endeavors now. Indeed, to that end, we are presently (i) an-
alyzing Arizona data using our GARMA method, and (ii) including PM10
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measurements in our Kern County GARMA model. One must keep in mind
that comparisons between California and Arizona results are less straightfor-
ward than might be realized initially. Not only (i) is C. immitis endemic in
California, whereas C. posadasii is endemic in Arizona, but also (ii) climate
is different and it is possible that climatic variations are too small in Kern
County to explain incidence anomalies, but not so in Arizona (i.e., there is no
compelling reason why an incidence–weather connection should be the same
in all endemic areas since Coccidioides may react differently to different en-
vironments); (iii) the extent to which PM10 mirrors spore abundance in the
atmosphere is probably different in Pima and Kern counties, owing to the high
pollution levels in the latter location; and (iv) generally, different types of soils
in the various endemic areas and the extent to which they absorb precipitation
may also play a role21—for example, if rain goes mostly into run-off, then pre-
sumably its effect on fungal growth should be less. These effects, individually
and in their interplay, need to be examined in detail to sort out the differences
alluded to.

Our GARMA model may lead to different conclusions when PM10 con-
centrations in Kern County are used as additional input parameters. This is
because the method relies on a multidimensional minimization search. There-
fore, it would not be surprising (at least from a modeling perspective) if this
algorithm leads, for example, to both precipitation and PM10 being important,
even though precipitation did not come up in our original search (when PM10

was not considered).
The Coccidioides–environment system is interesting not only because of

its obvious practical implications-–economic costs25 and human suffering,1

but from a theoretical standpoint as well. It seems very likely that the input–
response relationships are nonlinear (with the input being the environmental
parameters and incidence time series, and the output being the incidence time
series); since incidence depends strongly on its own history, there must be
feedback loops, and the system clearly has memory; the system boundaries are
difficult to determine; it is an open system far from any sort of equilibrium. In
other words, the Coccidioides–environment system has many characteristics of
what is generally known as a complex system: it might be exhibiting an emer-
gent global behavior (large Coccidioides population booms) not imposed by
a central controller (climatic fluctuations), but resulting from the interactions
between the agents (Coccidioides and other organisms in its environment).26

Perhaps methods and techniques developed for totally unrelated complex sys-
tems might prove useful in understanding the behavior of Valley Fever time
series, especially surges and epidemics.
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